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Abstract

Even for an arithmetically D2 non-singular projective subvariety X ⊆ PN (C) = P , when we consider

a 1-st infinitesimal embedded deformation of X in P , some classes in the q-th Betti syzygy space

(or Koszul homology group) T 1,q
m

∼= (Z(q)
X /S+ ·Z(q)

X )(m) of X in (polynomial) degree m may suddenly

disappear. When we once find such an infinitesimally unstable q-th Betti syzygy class, we often find

a non-zero (q + 1)-th Betti syzygy space T 1,q+1
m or a non-zero (q − 1)-th Betti syzygy space T 1,q−1

m

with the same polynomial degree m at the same time, which has also an infinitesimally unstable

Betti syzygy class. One of the approximate explanations for such phenomena can be seen in the

proof of Corollary 2.9 of [8], where we used a decomposition of the obstruction map δ
(1)
IDF = (obσ)

1,q
m

(cf. Theorem 2.6 of [7]). Here, in a general situation, we give another but steadier explanation of

these phenomena (cf. Main Theorem 1.16 (1.16.1)). As a byproduct, for a local 1-parameter family

of canonical curves of genus 5 with a trigonal curve in the central fiber, we can determine the module

structure of T
1,2
3 and the cohomological base change map φ1,2

3 , which was a remaining problem of

[9] and of [10].
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§0 Introduction.

For a closed subscheme X ⊆ PN (C) = Proj(S) = P , let us consider the graded Betti numbers {βq,m(X)}
of the homogeneous coordinate ring RX of X, where βq,m(X) = dimTorSq (RX , S/S+)(m). Over an al-

gebraic scheme B, when we deform the scheme X in a projective and flat family f : X → B of closed

subschemes in P , contrary to our naive expectation, the graded Betti numbers do not satisfy the upper

semi-continuity on B in general. This is caused by the reason that even in the case of the embedded

deformation, the family of closed subschemes does not induce a family of the (valid) homogeneous co-

ordinate rings of the members (= the fibers). In other words, the associated S+-primary ideals of the

homogeneous coordinate rings of the members in the family can not be removed simultaneously.
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If we assume moreover that all the closed fibers X(b) = f−1(b) (b ∈ B(cl.)) of the family f : X →
B satisfy the arithmetic D2-condition, then we have isomorphisms T 1,q

m (b) := H1(ΩqP (m) ⊗ IX(b)) ∼=
TorSq (RX(b), S/S+)(m) and see that the graded Betti numbers barely have the upper semi-continuity.

Let us consider the constancy of the graded Betti numbers which is a stronger property than the

upper semi-continuity. Even if we suppose that the family f : X → B is smooth with adding to the

assumption above, still the constancy of the graded Betti numbers does not hold in general. The decay

of the constancy of the graded Betti numbers is named the degeneration of syzygies, which means that

the limit of the systems of minimal generators of the syzygy modules loses its power of generation. One

of the classical examples for this phenomenon can be found in [4] (cf. also [5], [6]), which is the family

of canonical curves of genus 5 including trigonal curves as the special fibers. In our previous papers

[9] and [10], we studied this example by using our technique of infinitesimal study of syzygies. This

technique was prepared in [7], [8] and [11]. The original purpose of these three papers was studying

the constancy of the graded Betti numbers by using the locally freeness of the Betti syzygy sheaves

{T 1,q
m (X) = R1π∗(Ω

q
P×B/B(m)⊗ IX)|q,m ∈ Z}, where π : P ×B → B denotes the projection morphism

to B. Someone might think that we can study also the degeneration of syzygies by analyzing locally the

non-freeness of the stalks of these Betti syzygy sheaves. However, without freeness of the stalks of the

Betti syzygy sheaves, for a closed point b ∈ B, the cohomological base change map φ1,q
m (b) : T 1,q

m ⊗k(b)→
T 1,q
m (X(b)) is not surjective in general. The ruin of this cohomological base change property brings us

a technical difficulty for studying the degeneration of syzygies by analyzing Betti syzygy sheaves in

general. Although we have this technical difficulty, if we restrict ourselves to the minimal syzygy level of

the degeneration, we still have a spy hole which make us possible to study the degeneration of syzygies.

In this paper, we turn this technical difficulty into our advantage for studying the degeneration of

syzygies and find a general principle which is called as “adjacent concurrence” (cf. Main Theorem 1.16).

Roughly speaking, this principle tells us that once we have a q-th Betti syzygy class in (polynomial)

degree m which can not be extended to the (1-st) infinitesimal neighborhood in the direction of a global

normal vector field σ ∈ H0(NX), then we have also a (q + 1)-th Betti syzygy class or a (q − 1)-th Betti

syzygy class in degree m with the similar property.

We refer fundamentally to [9], [10], [3] or [2], and often use the terminology and the results in [9], [10]

or in [3] without mentioning except somethings important.

§1 Main results.

In this section, we start from a general setting, where we once leave the concrete example handled

continuously in [9] and [10]. From [9], we recall Circumstances 1.1 (AD2) and Notation and Conventions

1.2 as this general setting.

Definition 1.1 We call a family f : X→ B satisfying the property in the circumstances (AD2) of [9] as

an AD2-family in PN (C) = P for short.

The induced sheaf T p,q
m = T p,q

m (X), the induced OBν
-module T

p,q

m,ν = T
p,q

m,ν(b0) and the induced

k(b0)-vector space T p,qm = T p,qm (b0) from the AD2-family f : X → B and a closed point b0 ∈ B, are
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called (p, q,m)-Betti syzygy sheaf (or simply, Betti syzygy sheaf), ν-th infinitesimal (p, q,m)-Betti syzygy

module (or, infinitesimal Betti syzygy module) at the point b0, and (p, q,m)-Betti syzygy space at the

point b0 (or Betti syzygy space), respectively. An element of T p,qm is called a ((p, q,m)-)Betti syzygy class.

The indexes p, q, m, ν of the infinitesimal Betti syzygy module T
p,q

m,ν = Rpπν ∗(Ω
q

P×Bν/Bν
(m)⊗ IXν

)

are named as follows. We say that the infinitesimal Betti syzygy module T
p,q

m,ν has cohomology degree

p, syzygy level q, polynomial degree (or S-degree) m, infinitesimal level ν. Also the indexes p, q, m

of the Betti syzygy sheaf T p,q
m = Rpπ∗(Ω

q
P×B/B(m) ⊗ IX) and of the Betti syzygy space T p,qm are named

similarly.

Remark 1.2 In Definition 1.1, only in the case of p = 1, the spaces T p,qm are relating definitely to the

“proper” Betti syzygy spaces (=“minimal generators” of the syzygyies) by T 1,q
m (b) ∼= (Z(q)

X(b)/S+ ·Z(q)
X(b))(m)

and βq,m(X(b)) = dimT 1,q
m (b) (q ≥ 1), where S+ and Z(q)

X(b) denote the irrelevant maximal ideal of

S = C[Z0, . . . , ZN ] and the q-th syzygy module of the homogeneous coordinate ring RX(b) of the closed fiber

X(b), namely Z(q)
X(b) = Im[FX(b),q−1 ← FX(b),q] for a minimal graded S-free resolution FX(b),• of RX(b),

respectively. In the cases of p ̸= 1, depending on the arithmetic depth of RX(b), the spaces T p,qm (b) are

considered as objects relating vaguely to the (q−p+1,m)-Betti syzygy spaces (Z(q−p+1)
X(b) /S+ ·Z(q−p+1)

X(b) )(m)

through the Lefschetz maps L = ∪ c1(OP (1)). For example, L : T 1,q
m (b) ↪→ T 2,q+1

m (b) in general. But

if the closed fiber X(b) satisfies the arithmetic D3-condition, e.g. arithmetically Cohen-Macaulay of

dimX(b) ≥ 2, then T 1,q
m (b) ∼= T 2,q+1

m (b) and L : T 2,q+1
m (b) ↪→ T 3,q+2

m (b).

Remark 1.3 Take a closed point b0 in an algebraic scheme B over C and put Bν to be the ν-th in-

finitesimal neighborhood of b0 in B. When we start from a given projective and flat family g : Y → Bν

over the fat point Bν , by putting f = g, X = Y, B = Bν , b0 to be the unique closed point of Bν in Cir-

cumstances 1.1 (AD2) of [9], since (Bν)ν = Bν , the induced family fν : Xν → Bν from this f : X → B

coincides with the original family g : Y → Bν , to which we can apply Definition 1.1 above and have

T p,q
m (Y) ∼= T

p,q

m,ν(b0). Thus the over line is used only to emphasize the objects being infinitesimal ones.

In [11], we introduced the concept “q0-Bett constancy” for the inductive construction of the families

with the (full) Betti constancy. Here we introduce a refinement of this concept for studying generally

degenerations of syzygies.

Definition 1.4 ((q0,m0)-Betti constancy) Take an AD2-family f : X → B in PN (C) = P , and

integers q0, m0 with 0 ≤ q0 ≤ N and fix them. Then we say that the family f : X→ B is (q0,m0)-Betti

constant if the coherent sheaves T 1,q
m0

(X) = R1π∗(Ω
q
P×B/B(m0) ⊗ IX) are OB-locally free sheaves for all

the integers q with 0 ≤ q ≤ q0. For the ν-th infinitesimal neighborhood Bν of a closed point b0 ∈ B,

this definition can be applied also to an AD2 family g : Y → Bν including the case Y = Xν = X×B Bν

and g = fν by using the modules {T 1,q

m0,ν |0 ≤ q ≤ q0}, since T
p,q

m,ν(b0) = T p,q
m (Xν). Similarly, the

localized concept “(q0,m0)-Betti constant around the point b0” is defined by using the freeness of the stalks

{(T 1,q
m0

)b0 |0 ≤ q ≤ q0} at the point b0, namely, the condition (L.F.)1,qm0
(b0) in [9] holds for 0 ≤ q ≤ q0.
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Remark 1.5 For any integer m0 ∈ Z including negative one, any AD2-family f : X → B in PN (C)
satisfies (0,m0)-Betti constancy (cf. (1.6.1) of Theorem 1.6 below).

Using Remark 1.5 above, we can amend Theorem 1.7 of [9] as follows since the inductive proof on q0

for Theorem 1.7 in [9] does not need to run the polynomial degree m except the case q = 0.

Theorem 1.6 (cf. [11]) Let f : X → B be an AD2-family in PN (C) = P . Then we see the following

two properties.

(1.6.1) For any integer m ∈ Z, the coherent sheaf T 0,0
m = π∗(IX(m)) is OB-locally free.

(1.6.2) For any closed point b ∈ B(cl.) and any integer m ∈ Z, the cohomological base change map

φ0,0
m (b) : T 0,0

m ⊗ k(b) = π∗(IX(m)) ⊗ k(b) → T 0,0
m (b) = H0(IX(b)(m)) at the point b is an

isomorphism.

Now we fix integers q0 ≥ 0 and m0. Assume moreover that the family f : X → B is (q0,m0)-Betti

constant. Then we have the following two properties.

(1.6.3) The coherent sheaves T 0,q
m0

= π∗(Ω
q
P×B/B(m0)⊗IX) are OB-locally free for all the integers q ∈ Z

with q0 ≥ q ≥ 0.

(1.6.4) If p = 0 or p = 1, then, for any closed point b ∈ B(cl.) and for any integer q ∈ Z with q0 ≥ q ≥ 0,

the cohomological base change map φp,qm0
(b) : T p,q

m0
⊗ k(b) = Rpπ∗(Ω

q
P×B/B(m0) ⊗ IX) ⊗ k(b) →

T p,qm0
(b) = Hp(ΩqPk(b)

(m0)⊗IX(b)) at the point b is an isomorphism. Moreover, if p = 1, q = q0+1

and b ∈ B(cl.), then the map φp,qm0
(b) is still isomorphic.

In the introduction of [9], we described what is the “degeneration of syzygies” by using the Hilbert

schemes. However, from the technical view point, that definition on the degeneration of syzygies is not

so convenient to handle. Here we give a new definition on the “degeneration of syzygies” as a technical

refinement of the previous one, which is using our previous definition on “(q0,m0)-Betti constancy”.

Definition 1.7 (degeneration of syzygies) Fix integers q1, m0 with q1 ≥ 1. We say that at a closed

point b0 ∈ B, an AD2-family f : X → B in PN (C) has the degeneration of syzygies in minimal syzygy

level q1 and in S-degree m0 (or simply, the degeneration of (q1,m0)-syzygies), if around the point b0, the

family is (q1 − 1,m0)-Betti constant but is not (q1,m0)-Betti constant. It is equivalent to the condition

that (L.F.)1,qm0
(b0) holds for 0 ≤ q ≤ q1 − 1 and does not hold for q = q1 (cf. Notation and Conventions

1.2 in [9]).

Remark 1.8 We consider that a zero module is a free module of rank zero as usual. Thus, when we say

that a non-free module is given, then it implies that the module is a non-zero module. In particular, the

stalk (T 1,q1
m0

)b0 for the case q = q1 in Definition 1.7 is not a zero module.
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− ∗ −

Setup of Main Theorem

Now we describe the setup of Main Theorem 1.16 below. Fix the infinitesimal level ν to be 1 and

abbreviate the index ν in the sequel. To clarify the assumption of Theorem 1.16, we make a mark • at
the head of the sentence describing the assumption whenever we add a new one.

• Let us take a projective scheme X of dimension n ≥ 1 with H0(OX) ∼= C and one of its arithmetic

D2-embeddings j : X ↪→ PN (C) = Proj(S) = P , where S = C[Z0, . . . , ZN ] is a polynomial ring of N + 1

variables.

We want to analyze the infinitesimal variation of syzygies of X depending on a tangent vector v ∈
ΘH,[X] at the closed point [X] of the Hilbert scheme H = Hilb

AX(m)
P . Since the 1-st infinitesimal

embedded deformations of X in P :

X = X(σ) P ×B

B.

-j

Q
Q

Q
QQsf ?

π (#-1)

over B = Spec(C[ε]/(ε2)) are classified by global normal vector fields σ ∈ H0(NX) ∼= HomOP
(IX , OX),

by the universality of the Hilbert scheme H, we see the well-known fact : ΘH,[X]
∼= H0(NX).

• Let f : X→ B be a 1-st infinitesimal embedded deformation of X in PN (C) = P which corresponds to

a global normal vector field σ ∈ H0(NX).

Thus we want to study the effect of the global normal vector field σ ∈ H0(NX) to the structures of

infinitesimal Betti syzygy modules {T p,q

m } and related maps (cf. (#-3) below). Let us recall the first row

in the diagram (#-3) of [7]:

0 −−−−→ IX
×ε−−−−→ IX −−−−→ IX −−−−→ 0. (#-2)

Tensoring Ωq
P×B/B(m) to this sequence (#-2) and taking higher direct images by π, we have a long exact

sequence of finite OB -modules :

−−−−→ T p−1,q
m

(obσ)
p−1,q
m−−−−−−−→ T p,qm

µp,q
m−−−−→ T

p,q

m

λp,q
m−−−−→ T p,qm

(obσ)
p,q
m−−−−−→ T p+1,q

m −−−−→ , (#-3)

where T p,qm = Hp(ΩqP (m)⊗IX), T
p,q

m = Rpπ∗(Ω
q

P×B/B(m)⊗IX), and the obstruction map (obσ)
p,q
m is the

same as the map δ
(p)
IDF in [7] for the case F = ΩqP (m). The map λp,qm is a composition map of the canonical

map T
p,q

m → T
p,q

m ⊗ k(b0) and the cohomorogical base change map φp,qm (b0) : T
p,q

m ⊗ k(b0)→ T p,qm at the

unique closed point b0 ∈ B, where k(b0) ∼= C denotes the residue field of the local ring OB .
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Definition 1.9 (infinitesimally unstable Betti syzygy class) For integers p′, q′ and m′, we con-

sider the map λp
′,q′

m′ : T
p′,q′

m′ → T p
′,q′

m′ in the sequence (#-3) and a non-zero class α ∈ T p
′,q′

m′ . We say that

the Betti syzygy class α is infinitesimally unstable in the direction of σ if the class α is obstructed (i.e.

(obσ)
p′,q′

m′ (α) ̸= 0 in T p
′+1,q′

m′ ), or there exists an element α̃ ∈ T
p′,q′

m′ such that ε · α̃ = 0 and the class α̃

is a λp
′,q′

m′ -lift of the class α (i.e. λp
′,q′

m′ (α̃) = α). On the other hand, if the Betti syzygy class α is not

infinitesimally unstable in the direction of σ, we say that the Betti syzygy class α is infinitesimally stable

in the direction of σ. If the class α is infinitesimally stable in the direction of σ for any σ ∈ H0(NX),

we say that the Betti syzygy class α is infinitesimally stable in all directions. 　　

Remark 1.10 In the Definition 1.9, if (obσ)
p′,q′

m′ (α) = 0, to determine the infinitesimal unstability or

stability of the class α in the direction of σ, it is enough to test ε · α̃ = 0 or ̸= 0 only for one λp
′,q′

m′ -lift α̃

of the class α. To see this, let us take any other λp
′,q′

m′ -lift β̃ of the class α. Then recalling the sequence

(#-3), we have a class δ ∈ T p
′,q′

m′ and α̃−β̃ = µp
′,q′

m′ (δ). Since the Betti syzygy space T p
′,q′

m′ is a k(b0)-vector

space and is annihilated by ε ∈ OB, we have

ε · α̃ = ε · (β̃ + µp
′,q′

m′ (δ)) = ε · β̃ + µp
′,q′

m′ (ε · δ) = ε · β̃.

• Suppose that the family f : X→ B has the degeneration of syzygies in minimal syzygy level q1 and in

S-degree m0 at the point b0.

Applying (1.6.4) of Theorem 1.6, for any integer q with q1 ≥ q ≥ 0, we obtain a shortened exact

sequence from the sequence (#-3) :

0 −−−−→ T 0,q
m0

µ0,q
m0−−−−→
×ε

T
0,q

m0

λ0,q
m0−−−−→ T 0,q

m0

−−−−−→
(obσ)

0,q
m0

T 1,q
m0

×ε−−−−→
µ1,q
m0

T
1,q

m0
−−−−→
λ1,q
m0

T 1,q
m0
−−−−−→
(obσ)

1,q
m0

0.

(#-4)

Moreover, for an integer q with q1 − 1 ≥ q ≥ 0, Theorem 1.6 implies also the surjectivity of the map

λ0,q
m0

, which shows that the map (obσ)
0,q
m0

is a zero map and the sequence (#-4) is decomposed into two

short exact sequences. On the other hand, if we assume that the map (obσ)
0,q
m0

is zero, then it brings that

the OB -freeness of the two modules T
0,q

m0
and T

1,q

m0
. Thus, in case of q = q1, the map (obσ)

0,q
m0

is not a

zero map, which implies that (C.B.C)0,q1m0
does not hold, or equivalently (C.B.C)1,q1+1

m0
does not hold (cf.

Proposition 1.8 of [9]). Thus, what we want to see is the relation of the two spaces T 1,q1
m0

and T 1,q1+1
m0

,

e.g. comparing the graded Betti numbers βq1,m0 = dimT 1,q1
m0

and βq1+1,m0 = T 1,q1+1
m0

.

Let us consider the sequence (#-4) more precisely in the case q = q1. Since the ring OB is a very

special Artinian ring (i.e. a homomorphic image of a D.V.R.), we use here the technical term “rank” in

a slightly different meaning from the usual one (cf. Definition 1.4.2. in [1]).
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Lemma 1.11 Under the circumstances, putting r = rankOB
T

1,q1
m0

, which means the maximal rank of

the OB -free direct summands of the module T
1,q1
m0

, and s = dim Im((obσ)
0,q1
m0

), we have

βq1,m0 = r + s, s > 0.

Proof. Since OB
∼= C[[ε]]/(ε2), we can consider the module T

1,q1
m0

as a finite C[[ε]]-module annihilated

by ε2 via the OB -module structure, where C[[ε]] denotes the formal power series ring of 1-variable ε.

Using the fact that the ring C[[ε]] is a P.I.D. (or a D.V.R.), we see

T
1,q1
m0
∼=

(
r⊕
i=1

OB ei

)
⊕

(
r+s⊕
i=r+1

k(b0) ei

)
. (#-5)

These numbers r and s are recovered from the module M = T
1,q1
m0

through r = dimk(b0) Im[M
×ε→M ]

and s = dimk(b0) Tor
OB
1 (M,k(b0)). In our proof, we set the number “s” to be as in (#-5) and show

s = dim Im((obσ)
0,q1
m0

) in the sequel. Since Theorem 1.6 shows (C.B.C)1,q1m0
(b0), the map λ1,q1

m0
induces

the isomorphic cohomological base change map φ1,q1
m0

: T
1,q1
m0
⊗ k(b0)→ T 1,q1

m0
, which implies that the set

{λ1,q1
m0

(ei)}r+si=1 forms a k(b0)-basis of the k(b0)-vector space T 1,q1
m0

and βq1,m0 = r+ s. Thus, by a suitable

base change of the k(b0)-vector space T
1,q1
m0

, we can identify the map λ1,q1
m0

with the canonical map arising

from the natural maps OB → k(b0) = OB/(ε) and Id : k(b0) → k(b0). Then Ker(λ1,q1
m0

) = ⊕ri=1Cεei =
Im(µ1,q1

m0
). Now we see that dim Im((obσ)

0,q1
m0

) = dimKer(µ1,q1
m0

) = dimT 1,q1
m0
− dim Im(µ1,q1

m0
) = βq1,m0 −

r = s. By our assumption of the degeneration of (q1,m0)-syzygies, the module T
1,q1
m0

itself is not OB -

free, we see that s > 0.

Let us introduce two additional concepts with certain geometric meanings, which may be suggested

by their naming.

Definition 1.12 Under the circumstances above, we give two definitions.

(1.12.1) We say that the normal vector field σ ∈ H0(NX) is in the transversal direction only to the

(q1,m0)-Betti constancy if r = 0, namely the module T
1,q1
m0

has a k(b0)-module structure via the

original OB-module structure, or equivalently, AnnOB
(T

1,q1
m0

) = (ε).

(1.12.2) For integers p′, q′ and m′, if the Betti syzygy space T p
′,q′

m′ is not zero and the map λp
′,q′

m′ is zero,

then we say that the Betti syzygy space T p
′,q′

m′ is totally obstructed.

Lemma 1.13 Under the circumstances above, the normal vector field σ is in the transversal direction

only to the (q1,m0)-Betti constancy if and only if the obstruction map (obσ)
0,q1
m0

is surjective.

Proof. By Lemma 1.11, it is obvious because each of the two conditions in this Lemma is equivalent to

µ1,q1
m0

= 0.

7

Reports  of  Graduate  School  of  Science,  University  of  Hyogo  No.32 （2021）



Lemma 1.14 Under the circumstances above, the following four conditions are equivalent.

(1.14.1) The normal vector field σ is in the transversal direction only to the (q1,m0)-Betti constancy and

the space T 0,q1
m0

is totally obstructed. (Hence (C.B.C)0,q1m0
does not hold in this case).

(1.14.2) The maps λ1,q1
m0

and µ0,q1
m0

are isomorphic.

(1.14.3) The maps µ1,q1
m0

and λ0,q1
m0

are zero.

(1.14.4) The map (obσ)
0,q1
m0

is isomorphic.

Proof. By the sequence (#-4) with putting q = q1 and Theorem 12.11 of Cap.III in [3], the implications

(1.14.1) ⇒ (1.14.2) ⇒ (1.14.3) ⇒ (1.14.4) are obvious. Now we assume (1.14.4) and show (1.14.1).

Since the finite OB -module T
1,q1
m0

is not zero (cf. Remark 1.8), Nakayama’s lemma implies T 1,q1
m0

∼=
T

1,q1
m0
⊗ k(b0) ̸= 0. By the isomorphism (obσ)

0,q1
m0

, T 0,q1
m0
∼= T 1,q1

m0
̸= 0. Both of the two conditions (1.14.3)

and (1.14.2) are also obtained easily. Thus, the map λ0,q1
m0

is zero and the map λ1,q1
m0

is isomorphic, and

we have (1.14.1).

Let us summarize our assumptions in our setup above.

Assumption 1.15 For Main Theorem 1.16, we need the following three conditions in our setup.

(1.15.1) An embedding j : X ↪→ PN (C) = P satisfies the arithmetic D2-condition.

(1.15.2) f : X→ B is a 1-st infinitesimal embedded deformation of X in P which corresponds to a global

normal vector field σ ∈ H0(NX).

(1.15.3) The family f : X→ B has the degeneration of (q1,m0)-syzygies.

Main Theorem 1.16 (adjacent concurrence) Suppose the three conditions in Assumption 1.15 above.

Then, putting s = dim Im((obσ)
0,q1
m0

), we have the following three claims.

(1.16.1) On the graded Betti numbers of X, we have inequalities βq1,m0 ≥ s > 0 and βq1+1,m0 ≥
s > 0. Moreover, each of the Betti syzygy spaces T 1,q1

m0
and T 1,q1+1

m0
has an infinitesimally unstable

Betti syzygy class in the direction of σ.

(1.16.2) If the normal vector field σ is in the transversal direction only to the (q1,m0)-Betti constancy,

then we have the inequalities : 0 < βq1,m0 ≤ βq1+1,m0 .

(1.16.3) Adding to the assumption of (1.16.2), if the space T 0,q1
m0

is totally obstructed, then we have

T 1,q1+1
m0

∼= T 0,q1
m0

∼= T 1,q1
m0

̸= 0, 0 < βq1,m0
= βq1+1,m0

, and the map (obσ)
1,q1+1
m0

is injective,

or equivalently the map λ1,q1+1
m0

: T
1,q1+1

m0
→ T 1,q1+1

m0
is a zero map. In other words, the Betti

syzygy space T 1,q1+1
m0

is totally obstructed.
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Proof. Let us recall a short exact sequence arising from the (q1 +1)-exterior product of the mid-term in

the Euler sequence for the sheaf of the relative differential 1-forms Ω1
P×B/B on P × B over B and from

the induced filtration :

0 −−−−→ Ωq1+1

P×B/B(m0) −−−−→
(N+1
q1+1)⊕

OP×B/B(m0 − q1 − 1) −−−−→ Ωq1
P×B/B(m0) −−−−→ 0 (#-6)

with m0-tuple twisting by the relative ample line bundle OP×B/B(1). Since every term in the sequence

(#-6) is an OP×B -locally free sheaf, by tensoring two short exact sequences (#-6) and (#-2), we obtain

a 3×3 exact commutative diagram. Taking higher direct images by the morphism π of each entry in this

3× 3 exact commutative diagram with putting k0 = m0 − q1 − 1, we get an exact commutative diagram:

⊕H1(IX(k0)) = 0y
T

0,q1
m0

λ0,q1
m0−−−−→ T 0,q1

m0

(obσ)
0,q1
m0−−−−−−→ T 1,q1

m0

γ0

y γ1

y yγ2
T

1,q1+1

m0
−−−−−→
λ
1,q1+1
m0

T 1,q1+1
m0

−−−−−−−→
(obσ)

1,q1+1
m0

T 2,q1+1
m0y

⊕H1(IX(k0)) = 0,

(#-7)

which implies an equality of the maps:

γ2 ◦ (obσ)0,q1m0
= (obσ)

1,q1+1
m0

◦ γ1, (#-8)

and the injectivity of the map γ2 and the surjectivity of the map γ1.

From Lemma 1.11, the inequality βq1,m0 ≥ s > 0 is obvious. The other inequality in the claim (1.16.1)

is obtained by

s = dim Im(obσ)
0,q1
m0

= dim Im(γ2 ◦ (obσ)0,q1m0
)

= dim Im((obσ)
1,q1+1
m0

◦ γ1) = dim Im((obσ)
1,q1+1
m0

)

≤ dimT 1,q1+1
m0

= βq1+1,m0 .

Let us show the existence of infinitesimally unstable Betti syzygy classes in the Betti syzygy spaces T 1,q1
m0

and T 1,q1+1
m0

. On the case T 1,q1
m0

, since the module T
1,q1
m0

has the structure described in (#-5), we can

take a non-zero class α̃ ∈ T
1,q1
m0

which has 1 in all the k(b0)-components and 0 in all the OB-components.

Then, by putting α := λ1,q1
m0

(α̃), we see easily that ε · α̃ = 0 and α ̸= 0, which means that the Betti syzygy

space T 1,q1
m0

has an infinitesimally unstable Betti syzygy class α. On the case T 1,q1+1
m0

, we note the diagram
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(#-7). Since 0 < s = dim Im(obσ)
0,q1
m0

, we can choose a non-zero class δ ∈ Im(obσ)
0,q1
m0
⊆ T 1,q1

m0
. By the

injectivity of the map γ2, we have γ2(δ) ̸= 0. Take an (obσ)
0,q1
m0

-lift δ̃ ∈ T 0,q1
m0

, namely (obσ)
0,q1
m0

(δ̃) = δ

and put β = γ1(δ̃) ∈ T 1,q1+1
m0

. Then the (q1 + 1,m0)-Betti syzygy class β ∈ T 1,q1+1
m0

is an infinitesimally

unstable Betti syzygy class. In fact,

(obσ)
1,q1+1
m0

(β) = (obσ)
1,q1+1
m0

◦ γ1(δ̃) = γ2 ◦ (obσ)0,q1m0
(δ̃) = γ2(δ) ̸= 0.

Thus we obtain the claim (1.16.1).

By Lemma 1.13, we see the surjectivity of the map (obσ)
0,q1
m0

, which implies βq1,m0 = s. Then the

claim (1.16.1) implies the inequalities 0 < βq1,m0 ≤ βq1+1,m0

Now we assume moreover that the space T 0,q1
m0

is totally obstructed. Then, by Lemma 1.14, we see

that the map (obσ)
0,q1
m0

is isomorphic. Using the injectivity of γ2, the map composed in the left hand side

of the equality (#-8) is injective, and therefore the map composed in the right hand side and the map

γ1 are also injective. Hence the map γ1 is isomorphic and we see T 1,q1+1
m0

∼= T 0,q1
m0
∼= T 1,q1

m0
̸= 0. By using

again the injectivity of the map (obσ)
1,q1+1
m0

◦ γ1, we see that the map (obσ)
1,q1+1
m0

is also injective.

§2 An Application.

As an application of the results in the previous section, on a local 1-parameter family of canonical curves

of genus 5 with a trigonal curve as a central fiber which is handled continuously in [9] and [10], we will

determine the module structure of T
1,2

3 and the cohomological base change map φ1,2
3 in this section. This

is one of our remaining problems indicated by Remark 2.3 of [9]. As we saw in Table 2 of [9], the condition

(C.B.C)1,23 (b0) does not hold if τ(σ) ̸= 0 (cf. on the map τ , see below). Hence, if τ(σ) ̸= 0, then there is

no guarantee that T
1,2

3
∼= T 1,2

3 ⊗OB holds in general. In fact, T
1,2

3 ̸= 0 and T
1,2

3 ̸∼= T 1,2
3 ⊗OB = 0 as

we will see in Theorem 2.1 (cf. also Table 2 in [9]).

To descrbe our results on this example, let us take the Hilbert scheme H = Hilb
A(m)
P of P(C)4 = P

associated with a Hilbert polynomial A(m) = 8m − 4. All the canonical curves of genus 5 are included

in the universal family U → H of H. Take a trigonal canonical curve X ⊆ P of genus 5 and a closed

point b0 = [X] ∈ Hilb
A(m)
P corresponding to the curve X. Then the scheme H is smooth at the point b0.

The closure of the set of all the closed points in H corresponding to trigonal canonical curves with genus

5 in P form a divisor in H, which is denoted by D. The divisor D has an analytic branch D0 which is

smooth at the point b0. Then we take a locally closed affine smooth curve B ⊆ H which passes through

the point b0 and has the property B ∩ D = {b0} by removing finite other closed points of B ∩ D from B

if it is necessary. Then, the curve B induces a flat and projective family f : X = U ×H B → B. Since the

smoothness of a fiber is an open condition, by applying Riemann-Roch theorem, we may assume that all

the fibers are canonical curves of genus 5. Let us take the 1-st infinitesimal neighborhood B of the point

b0 in B and its induced family f : X→ B, which naturally corresponds to a section σ ∈ H0(NX) ∼= ΘH,b0

up to C×-multiplication, in other words, ΘH,b0 ⊇ ΘB,b0 = C · σ. The inclusions b0 ∈ D0 ⊆ H induce

the natural projection map τ : ΘH,b0 → ND0/H,b0 from the tangent space of H at the point b0 to the

normal vector space of the smooth branch D0 in H at the point b0. This map τ can be computed by the
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composition of the natural maps τ : H0(NX) → H0(NV ⊗ OX) → H1(NV ⊗ IX/V ), where V denotes a

unique non-singular cubic surface including the curve X (cf. [9]).

Let us recall Main Theorem 1.1 of [10] and its proof. If τ(σ) = 0, then all the modules {T 1,q

3 |q ≥ 0}
are OB -free. By Theorem 1.6, the cohomological base change maps {φp,q3 |q ≥ 0, p = 0, 1} are isomorphic,

which implies the equalities (obσ)
p,q
3 = 0 (q ≥ 0, p = 0, 1) and the surjectivity of the maps {λp,q3 |q ≥

0, p = 0, 1}. Thus, if τ(σ) = 0, we were able to determine easily the module structure of T
1,2

3 and to

see the cohomological base change map φ1,2
3 being isomorphic. Including the remaining case τ(σ) ̸= 0,

we can summarize our results as follows.

Theorem 2.1 Under the circumstances, the module structure of T
1,2

3 and the cohomological base change

map φ1,2
3 are determined as follows.

(2.1.1) If τ(σ) = 0, then T
1,2

3
∼= (OB)

⊕2, the cohomological base change map φ1,2
3 is an isomorphism.

(2.1.2) If τ(σ) ̸= 0, then T
1,2

3
∼= T 1,2

3
∼= k(b0)

⊕2, where the map µ1,2
3 : T 1,2

3 → T
1,2

3 is isomorphic. On

the other hand, both of the map λ1,2
3 : T

1,2

3 → T 1,2
3 and the cohomological base change map φ1,2

3

are zero maps.

Proof. For the claim (2.1.1), it is enough to recall the fact β2,3(X) = 2 (cf. Table 2 in [9]) and the

observation before Theorem 2.1.

Let us consider the claim (2.1.2) and assume τ(σ) ̸= 0. Recall the initial seven terms of the exact

sequence (#-3) with putting q = 2 and m = 3,

0 −−−−→ T 0,2
3

µ0,2
3−−−−→
×ε

T
0,2

3

λ0,2
3−−−−→ T 0,2

3

−−−−−→
(obσ)

0,2
3

T 1,2
3

×ε−−−−→
µ1,2
3

T
1,2

3 −−−−→
λ1,2
3

T 1,2
3 −−−−−→

(obσ)
1,2
3

T 2,2
3 .

(#-9)

Since the natural inclusions {b0} ↪→ B ↪→ B induce natural sheaf homomorphisms IX → IX = IX ⊗
π∗OB → IX = IX ⊗ π∗k(b0), where both of the two tensorings are taken over π∗OB with using the

flatness of the sheaf IX over B, we have natural “sheaf” homomorphisms T p,q
m

ψ→ T
p,q

m

λp,q
m→ T p,qm , which

imply a commutative diagram :

(T p,q
m )b0 T p,q

m ⊗ k(b0)

T
p,q

m T
p,q

m ⊗ k(b0) T p,qm .

-can.

?

ψ

Q
Q
Q

Q
QQs

φp,q
m

?

ψ⊗1k(b0)

-
can.

-
φp,q

m

(#-10)

Putting p = 0, q = 2, and m = 3 in the diagram (#-10) above, Table 2 in [9] tells us that T 1,2
3
∼= k(b0)

⊕2

and the condition (C.B.C)0,23 (b0) holds, which shows that the homomorphism φ0,2
3 is isomorphic. Hence
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we see the surjectivity of the maps φ0,2
3 and λ0,2

3 = φ0,2
3 ◦ can., where “can.” denotes the canonical map.

Then the exact sequence (#-9) gives

0 −−−−→ T 1,2
3

×ε−−−−→
µ1,2
3

T
1,2

3 −−−−→
λ1,2
3

T 1,2
3 −−−−−→

(obσ)
1,2
3

T 2,2
3 . (#-11)

Since λ1,2
3 = φ1,2

3 ◦ can., by the exact sequence (#-11), it is enough to show the injectivity of the map

(obσ)
1,2
3 .

Now let us recall Theorem 1.1 of [10] and its proof, where we show the surjectivity of the map

obσ = (obσ)
0,1
3 : T 0,1

3 → T 1,1
3
∼= k(b0)

⊕2. We compute dimT 0,1
3 by an exact sequence:

0 −−−−→ T 0,1
3 −−−−→ ⊕5T 0,0

2 −−−−→ T 0,0
3 −−−−→ T 1,1

3
∼= k(b0)

⊕2 −−−−→ 0, (#-12)

which arises from the Euler sequence on P with tensoring IX(3). By the fact OX(1) ∼= OX(KX) and

arithmetically Cohen-Macaulay property of the homogeneous coordinate ringRX , Riemann-Roch theorem

shows dimT 0,0
3 = 15 and dimT 0,0

2 = 3. Thus we see that dimT 0,1
3 = 2 and the map (obσ)

0,1
3 is isomorphic.

Then, Lemma 1.14 and the claim (1.16.3) of Main Theorem 1.16 in the previous section with setting q1 = 1

and m0 = 3 show the injectivity of the map (obσ)
1,2
3 .
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