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Ogus Derivations
and
the Explicit Syzygy Class Maps

Takeshi Usa
Dept. of Math. Univ. of Hyogo *

Abstract

Let X be a given closed subscheme with the arithmetic D condition in a complex projective space
P =PN(C) = Proj(5) (S := C[Zs,...,Zn]). To study locally along X the sheaf of g-th syzygy mod-
ule Z J(g/) p (2> 1) of the homogeneous coordinate ring Ry of X as an S-module, here we construct and
calculate explicitly the g-syzygy class map for degree m part p(@™ : ['(P, Zggf) p(m)) = HY(X, 0% ®
N3/p(m)) in a local expression form with using local frames and local coordinates. This map in-
duces an isomorphism onto the space of infinitesimal obstructions p(¢:™) : I'(P, Z J(f/} s(m))/ Efio Z; -
L(P,Z{)p(m -1) = Tor (Rx,5/S+)my = ImBrr] C HY(X,0% ® N, »(m)). In other words,
we give good Cech representatives for the image of the C-linear homomorphism p(®™),
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80 Introduction

As we presented several fundamental problems in [13], our main interest is in the “geometric structure”
of a projective embedding of a given variety X. That means to study intermediate ambient schemes
satisfying certain good conditions from the view point of syzygies for the embedded variety X. Such an
intermediate ambient scheme is called “pregeometric shell” (abbr. PG-shell...cf. [12]).

Now let X be a closed subscheme which satisfies the arithmetic Dy condition in a complex projective
space P = PN(C) = Proj(S) (S := C[Z,...,2Zx]). From our view point, it is important to consider
(locally along X) the properties of the sheaf of g-th syzygy module Z )({q/)P (g =2 1) of the homogeneous
coordinate ring Rx of X as an S-module(cf. e.g. [15]). In particular, we have to determine the minimum
order of infinitesimal neighborhoods of X in P where the information of minimal generators of the S-
module &,,I'(P, Zgg/) p(m)) survives. This task will be attained by the joint force of this paper and the
forthcoming paper. In this paper, we construct and calculate explicitly the g-syzygy class map for degree
m part p(@™) : T'(P, Z;g)P(m)) — H'(X,0% ® Ny,p(m)) in a local expression form with using local

/
frames and local coordinates. This map naturally induces an isomorphism onto the space of infinitesimal

obstructions p(@™) : T(P, Z0)(m))/ SiLy Z: - T(P, Z) p(m —1)) = Tors (Rx, S/S+ ) (my — Im{dLrr] C
HY(X, Q% ® Ny, p(m) (cf. [13], [14]).

Since different homomorphisms of abelian sheaves may induce the same global map, to use an ob-
struction map of infinitesimal lifting for the calculation of p{@™), all of our calculation should be carried
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out in a local expression form. Also there is another key point of our work here. That is to get a good
Cech representative without ambiguity caused by the higher infinitesimal obstructions (cf. Remark 2.2).
Those will be different points from the usual syzygy theory by the method of commutative rings.

It might be considered that this local calculation straightly induce a construction of a homomorphism
of abelian sheaves whose global expression, after composing with the infinitesimal obstruction map,
coincides with the g-syzygy class map for degree m part p(@™), However, this is not so easy, needs much
more job including a construction of new sheaves for example, and will be carried out in the forthcoming

paper.

§1 Preliminaries.

At the beginning, let us summarize for convenience what will be used throughout this paper.

Notation and Conventions 1.1 We use the terminology of [2] without mentioning so, always admit
the conventions, and use the notation below for simplicity.

(1.1.1)  Ewvery object under consideration is defined over the field of complez numbers C. We will work in
the category of algebraic schemes and algebraically holomorphic morphisms (or rational maps) or
in the categories of coherent sheaves and their (O-linear) homomorphisms otherwise mentioned.
For o sheaf M and an open set U, a local section T € (U, M) is sometimes denoted by 7 € M
with abbreviation if there is no need to specify the open set U.

(1.1.2)  Let us take a complez projective scheme X of dimension n and one of its embeddings j : X —
P =PN(C). The sheaf of ideals defining 5(X) in P and the conormal sheaf are denoted by Ix
and NE/P = Ix /1%, respectively. Take a C-basis {2y, ... ,Zn} of H(P,Op(1)). Then we set:

§ = @ HP,0p(m)) 2ClZ,...,2ZN]

5, = :‘ézﬂﬂ(ﬂ Op(m) = (o, .. , Zn)S
(#-1) Rx = m@GH"(X,Ox(m))

Ix := rrggoﬂ"’(l:‘,Ix(m))

Rx := Im|S— Rx]% S/lx.

In the sequel, we almost always assume that the closed scheme j(X) satisfies arithmetic Dy

condition, namely Rx = Rx , otherwise mentioned.

(1.1.3)  For a graded S-module M, we denote the degree m part of M by Mm) , namely M = @ M.

meZ

In particular, the S/S,-vector space Torqs (Rx,5/84)(m) which represents the minimal gener-
ators in degree m of the g-th syzygy of Rx as an S-module will be denoted by gsyz% (m) for
simplicity. Affine sheafication (i.e. a canonically constructed Ogpec(s)-module from a S-module
) of an S-module M is denoted M™ and projective sheafication (i.e. a canonically constructed
OpProj(s)-module from a graded S-module ) of a graded S-module M s denoted M (), respec-
tively.

(1.1.4) To describe the homomorphisms of free graded S-modules clearly by using matrices, we often
descrbe a free graded S-module by F = @I ;Se; with using a free basis {e;|deg(e;) = m;}i,
instead of by F = @, 5(—m;) with using degree shifting. In this case, the isomorphism on each
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direct summand is given by S(-m) 2 S(~m)x) = Sk-m) 29+ 9 e € (S-€)x) © 5 - e, where
deg(e) =

(1.1.5)  For a coherent sheaf E on a projective subscheme V' C P, we put: I.(E) := @ [(V, E(m)),

Tso(E) = @DF(V, E(m)), Tu(E) =T.(E)/(S+ - T.(E)), and HI(E) = @ H"(V E(m)).

m
Ezcept a few cases where we have to avoid confusion, we do not use dzstmguzshed fonts com-
prehensively for the graded S-modules and sheaves such as M and M, respectively. If we need
to distinguish clearly a sheaf M from the S-module T'.(M),we use the blackboard bold font for
S-module such as M = T',(M). Also, for ezample, we denote M, for complez of sheaves and M,
for complez of S-modules, respectively.

(1.1.6) Onan open setU C U, := Dy (Z,) of the N-th projective space PN (C), we often use the following
abbreviation for summation.

# SRS S DRRID »

Juidzeendk 0ZiiSNO0<j<N 0<j =N
Ji#a  j2#a Jx#a

(1.1.7) Let {M;}5_, be a set of abelian groups or of abelian sheaves, and {f; : M; — M1}l a set of
their homomorphisms. Then we denote their composition as

(#-3) Hfi:=fk—10"'0f1:M1—$M2—}---->Mk

For the projective subscheme X := j(X) C P = PN(C) which satisfies arithmetic D, condition:
Ry = RX, take a minimal graded S-free resolution of the homogeneous coordinate ring Rx as a S-
module:

(#'4) F,: (RX \’— )Fu S '(—— F ¢ o e {—W‘ Fy ¢ 0,

where the homomorphism ¢; denotes a graded homomorphism without grade shifting:

o(i) o(i—1)

(#-5) o F=@se) — @ s =P

j=1

(#-6) m{? = deg(e?) 5 = m{) — m ™Y

o(i—1) ) .
(#7) i) = Z MO Y M) e HOP,0p(6)).
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Here we make a remark that the minimality of F, implies that M, k:; =0if 5;(27 <0.
For an integer k > 1, we set a graded S-module Zg?) to be I'm(pr) and call it the k-th syzygy module

of X. Also we set a coherent sheaf Z}({k) to be (Zgif))(“‘) and call it the sheaf of k-th syzygy module of
X. Obviously, we see that the sheaf of ideals Iy which define j(X) in P coincides with the sheaf of 1-st

syzygy module of X. In general, we have always Zg?) = F*(Z}(f)) since depths, (Rx) > 1. For more
information on the geometric properties of the sheaves Z)(f), see [15].

Let us take the de Rham complex Q% of P = P¥(C) :

0 — p Syt 2 5 0L 2y .8 g + 0
and the ideal order filtration (cf. [5]) FiQ%:
0—— Iyt L prelgL 4,
2 gt 4, g1 4, _2,qN » 0
Now we fix v and see Grf. (%) = F2/Ft1:
0 I;{+q / I;J(-f-q-i—l ds I?'q_l / I;H ®0L dr_,

= et 2 0%k, — 0,
where X,y = (|X|,0p /I}”{H). Contrary to the fact that the exterior derivative d is not Op-linear, the
map dy is Op-linear and compatible with tensoring by Op (m). In case v = 0, we have also an Op-linear
composition homomorphism :

(#-8) di=dror: Ix(m)@0%! —T— Ix/I2(m) @05 —2 Q%|x(m),

where the homomorphism r is the canonical one.
Next we consider the following exact commutative diagram including the global lifting sequence (LFT)

and the 1-st infinitesimal lifting sequence (LFT):

0 — Ix®0L(m) =EZ, Qi(m) -LEET, QL(m)x — 0

#9) g ! |

0 —— NY,p®0%(m) =5 Q%(m)(x,, 2225 Qb(m)|x — 0,

which induces obstruction maps (for the 1-st infinitesimal lifting and the global lifting):

HO(X,Q%(m)|x) 2E2%  HY(P,Ix ® Q% (m))

(#-10) I |r
HO(X, 0% (m)|x) —— H'(X, NY,p & Q%(m)).

SLFT

Then we define a map:
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(#-11) Ly =8gprods : HO(X, Ny (m) @ Q%™Y) - H(X, Ny,p(m) ® Q%),

which is called the meta-Lefschetz operator with respect to the projective embedding j : X — P =PV (C).

In general, this operator does not coincide with a coupling by the 1-st Chern class of a line bundle up to

constants (cf. [7]). For more general definition and properties on meta-Lefschetz operators, see [13].
Putting V := H°(P,0p(1)) = ®¥,CZ;, let us consider the Koszul complex K, for §/S; as an

S-module: .

(#-12)

(5/84 « = VKg=8 «2 K1 =80V «2— ... & pgr =8 A"V «—— 0.
In the sequel, to use familiar operations on differential forms the element Z; in V will be denoted by

dZ; symbolically. This has no spectial geometric meaning on P = PV (C) since Z; is only a section of a

line bundle and not a function on P.
The well-known fact from Spectral sequence theory tells us that the three complexes F, ® (5/5.),

K, ® (Rx), and the total complex T'ot(F, ® K, ) of the double complex F, ® K, are quasi-isomorphic with
each others (in the derived category of S-modules) and give the same homology Tory(Rx,S/S+). By
the minimality of the complex F, and considering the short exact sequence: Fgyq — Fy — Zgg) — 0, the
differential maps of the complex F, ® (S/S;+) is zero and we have the isomorphisms : (Z_(,g) /Sy Zg?)) =
Fy®8/8; = Hy(Fo ®(S/5,)) & Hy(Tot(F, ®K.)) & Hy(K, ® (Rx)), which give Tor{ (Rx,S/S4). The
composed isomorphism :

(#-13) X: (298, - Z9) = Hy(K, ® (Rx))

forms a part of our isomorphism : p(@™) : (Zgg) /S+ - Z§§>)(m, o Torqs (Rx,8/84)my=Im[0Lrr] C
HY(NV(m) ®Q%), which will be given in Theorem 1.12. To get the isomorphism A, we use the following
key diagram which compares the complex Tot(F, ® K,) with the bordered complexes F, ® (§/5,) and

K. ® (Rx).

(#-14)
By B o~y P88
-wJ' qu lﬂ—mnp
Fol1®V —29 Fp g —5 F,_1®(5/54)
e
: i (bd.cpz.)
he l
—S s RoATVY 24 .. 8B, ReV D R
(—1)%11 J'(—n?-lm o1 | J'm
RANV — RoATlv =24 .. &, ReV 25 R

vl |#o

Rx @ ATV — Rx @ ATV =%, (bd.cpz) —
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Since H,(K. ® (Rx)) is a quotient of Ker[Rg : Rx ® ANV = Rx® /'\q_1 V] & ®m>H (P, Q% |x (m)),
for each integer . > g > 1 (N.B. otherwise (P, zﬁ;” (m)) = 0), we will construct a homomorphism
A TCR Z},f-) (m)) = H*(P,Ix ® Q% *(m)) which makes the diagram:

(P20 (m) —— HO(PIx @ Q% (m)

(#'15) ca.n.l J{(can.)o(;“;)d;
@154 - 29) —-f—* Hy(K. ® (Rx)),

commutative, where the homomorphism dy is given at (#-8).

Remark 1.2 The correspondence by the map ) in the diagram (#-15) is described as follows. Let us
take Z € (Zf,? /S+ -Zgg))(m), k € Hy(Ke ® (Rx))(m) and their representatives : ao € (Zgg))(m) of Z and
aq € (Kq®(Rx))(m) of %, respectively. Then the equality A(z) = & holds if and only if there ezists a system
of elements {a; € (Fg—1-: ® N V)myli = 1,250 .9 1} and {b; € (Fy—j QN V)mli =12,... ,q}
with the condition: a; = Kit1(bit1) (i=0,...,0-2) and a; = (—1)*pq-i(bi) [f = Ypowuryl = 1)
aq = polby) in the diagram (#-14). The crucial point is that, even if we fiz the elements Z and k with
MZ) = E, the choice of such a system {ai}f;ll and {b;}}., is not unique as elements in general but is
unique up to boundaries.

To construct the homomorphism X, let us review several definitions in our previous papers. First
we refer [14] and recall the Ogus complex (C%w) z{mhVog = Vf;?]oc;) for a smooth quasi-projective
morphism f : W — B of pure relative dimension between algebraic schemes W and B over C and for
a line bundle H over W, where m denotes a fixed integer which is called the twist degree of the Ogus
complez. A local section of % W) g(m) will be called (Ogus) pseudo g-form of twist degree m.

Lemma 1.3 (cf. [14]) The Ogus comples (SH/wy z(m),Vog = V%;?]oc) has also Koszul operators
k=9 : T} /W/B(m) — Z}F/t{,/B(m) and the pair (Xyw, g(m), k) forms also a complez of sheaves,
which is called Koszul-Ogus complex. Moreover, we have

q
(#-16) ZEI/W/B(T”) = (/\ E.]iI/W/B) ® H™, EOH/W/B(T"') = g™
(#-17) K@) oV o+ Vitgos® =m - Ia,

which gives a chain homotpy between 0 and m- Ig.
For any local sections o1 € 4 W/ B (my) and o2 € =7 /W/B(mg), then o1 A o2 € E‘}}féf/ p(m1+ma)

and

(#-18) Vog(o1 Aaz) = Vog(o1) Aoz + (1)1 A Voa(o2)
(#-19) k(oL A o2) = k(o1) Aoz + (-1)201 AK(02)

In particular, if the local sections satisfy : 01 € E?{/W/B(ml), gy € E%/W/B(mz), and Vog(o2) =0,
then o1 - 02 € B%/W/B(ml +mg) and Vog(o1-02) = Vog(o1) Aoz.
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Remark 1.4 For example, we see from Lemma (1.3) above that E%/W/B(m-l- 1) = (E%/W/B{m)}@!owﬂ.
However, the Ogus derivation is really a differential operator of order 1 and the Ow -linear tensor produt
of the homomorphisms of sheaves Vim0 and 1y is not well-defined. The crucial point of the Ogus
complez is that the derivation Vim,1j0¢ s still well-defined even in this situation. Thus, fizing the Ogus
complez (XY w/ B VoG = VE:H)}OG) for the line bundle H with twist degree zero, if we take another line

bundle H, then there is no guarantee that we can make {Z%/w/B® H™} into a (co-chain) complex with
defining a suitable derivations, in general.

Using this Ogus complex, at the level of sheaves, we can replace with reversing the arrows the Koszul
operations &, of the Koszul complex (#-12) by exterior derivations and get the complex:

(#-20) Kog=S8 ﬂ} K=5V dex , .., _9Bx , KN+1=S®/\N+1V 0.

Since the local expression of the exterior derivation itself on PV (C) has non-trivial expression as we will
see in the sequel, we need to introduce the Ogus derivation.

In case of W = P = PY(C), H = Op(1), and B = Spec(C), the system of homogeneous coordinates
Zoy...,Zn € HY(P,0p(1)) = V given above can separate two points including infinitesimally near
points, which implies the isomorphism:

N
(#-21) Sopayprc(l) 2 Jhe(H) 2 P 0p 5 (Za),

a=0
where J} o (H) and j' : H - J} o (H) denote the 1-jet sheaf (the 1-st principal parts) of the line bundle
H = Op(1) and the 1-jet map, respectively. To see the correspondence between the complex (#-20) and
the Ogus complex (X% 1y, 5(m), Vog), we replace 71(Z.) in (#-21) by dZ,, which is only a symbol and
has no geometric meaning.

Then we have:

(#-22) Seapcm= P Op(m—g)dZ, A... AdZ,,.

0<a;<...<ag <N

Lemma 1.5 (cf. [14]) For W = P = PN(C), H = Op(1), and B = Spec(C), the local ezpressions
of the Ogus derivation Vog : £%_ 1 p/c(m) = @O0p(m — q) dZa; A ... A dZa, = B0y pjc(m) =
®0p(m — q—1) dZy, A ... AdZy, and the Koszul operator (for the Ogus complez) K : E%P(l)/wc(m) =
®0p(m — q) dZo, A ... NdZ,, — Ef);l(l)/},/c(m) >~ ®0p(m —q+1)dZy, A... AdZp,_, on an openset

U C U, = Di(Z) are given as follows.

(#-23)
Voe(f®Zy % dZa, A...NZg,)
N —_— —
N {(m_Q) = E;ék(%:‘) v }'deAdZ"l Ao NdZa, ® 2770

r=0,m

N
af el
+ T_Dz#k sz - 42r ANdZay A ... NdZa, ® Z]
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q
—_ 7 Za- TTL— C’,
(#-24) w(fo 27 "dZaI/\.../\dZaq)=§:(—I)J‘lf-(z—:)cxazk PO, Ay Mo 5 N,

=1

Corollary 1.6 For a local section G = g® Z™ € Op(m) = E‘(’)P(l)/},/c(m) on an openset U C D (Zy),

(#-25)
Voc(G) =Voe(g®Zl)

N N
r - a -
= {m R (%«') E(Zar_fzd}dz" ®Z '+ Y spidmy 420 2!

r=0,rs#k r=0,r#£k

Remark 1.7 In particular, for a homogeneous polynomial F of degree m — q, putting f := F/(Z;)™9,
we have

N
Vog(FdZa, A...NdZ,,) = ;}ggdz,,/\dzm/\.../\dzaq

q ) ;
K(F dZa, A...NdZ,,) = Y (-1VZ,; - FdZ, A... ... NdZ,,

i=1

which shows that the Ogus derivation Vog and the Koszul operator k of the Ogus complez coincide with
the ezterior derivation of the polynomial ring S and the (usual) Koszul operator for the mazimal ideal
S+ = (Zo,... ,ZN) of the polynomial ring S at the global level.

Definition 1.8 For (a general) Ogus complex (=g swy (M), Vog), we define the revised Ogus derivation

V as follows.

(#-26) V=
Vog (if m=0)

{%'Voc (if m+#0)
—_— * p—
Let us return to the previous diagram (#-14) and its core part Tot(Fs @ K,). Recall (#-6) and that

o(t)

(#-27) FeK, =P P S ePdz;A...ndz;,

u=1  0<j;<...<Go<N

Then, under the assumption: m an integer, W = P = PN(C), H = Op(1), and B = Spec(C), we set:

o(t)
e = B Thyyme (-l o
(#-28)
N ® ®
= @ 82} Op(m—my’ —s) ey’ dZ; A...AdZ;,

u=l  0<j1<..<ja<N
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=0t =@k: :‘;’./P (m) — E;(_/},'t (m)
(#-29) o1 =077 = (-1)'pe: Ey)p(m) — B3 (m)
Sr=6"=0V: B¢ m) — EFEm)
where, for a local section 9 = E el € (U, Ejgjp(m)) : Yu €U, 55,01/ p/c (m—mff))), using

u=1
{MJA of (#-7), the Op-linear homomorphisms 87, ;7 as boundary operators, and the abelian sheaf
homomorphism d; as coboundary operator are defined as follows.

o(t)
(#-30) or(¥) =Y x(hu) )
u=1
o(t—1) oft)
(#31 )= 3 (-1 (ZM”L )()
w=1
o(t)
(#-32) 81(%) : va yeg!

Since the Koszul operator x and the revised Ogus derivation v keep the twist degree of the Ogus com-
plex by the line bundle H = Op(1), the well-definedness of the boundary operator 8y and coboundary
operator d; are rather obvious. Now we consider the the well-definedness of the boundary operator

O11. Using the fact that M) € T(P,0p(64k)), %u € T(U,Th, 0y pjc (m — mi)), and (#-6), we
see that m — m{ + JS,)u =m-m? +ml® —mi™ = m-ml?, and (—1)3(22531 M(t) “1y) €
(U, E5,ay/p/c (M= e ))), or equivalently 8r7(¢) € L'(U, :}'}PI (m)).

From the construction above, we obviously obtain the following statement.

Lemma 1.9 We have 87087 =817 001y = 8y 00p1 + 817081 = 0. Let us set that 3 := 0r + 017 and

28 etm) = P S p(m).
s+t=n
Then the pair (_x / p(m),d) forms a sheaf of complez and the complez (T, :E,; / p(m)),8) of S-modules

coincides with the total complez Tot(F, ® K,) in the key diagram (#-14). In particular, T, (_X /P)
F; ® \* V naturally and the bounday operators 8}'* and 3}f correspond to ks and (—1)%py of (#-14).

Next we define the m-test projection which is a projection from :;.t/ p(m) to its direct summands whose

corresponding basis satisfy m{) = deg(e,(f)) > m, or equivalently whose twist degrees are non-positive.
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Definition 1.10 The projection prem, = PT;_':n-'

(#-33)
o(t)
Prsz’:n . :;(;p @Eopu y/P/C (m—-m t)) E(t) - @ Eop(1)/P/¢:("‘7"' m( )) ‘o) _”/ (m),
u=1 1<u<o(t)
my>m

18 called the m-test projection.

—5,t

Lemma 1.11 Assume that a local section ¢ € I'(U, :Jé/P(m)) satisfies : Or(¢) = 0 and prom () =0
for the m-test projection. Then 8y o 8;(1) = %, namely 6;(¥) € (8r)~'(¥) CT'(U, :’H t(m)) Moreover,
Byr o 81(v) € T(T, E;;;};‘—l(m)) satisfies  prom(8rr 0 61(¥)) = 0. Further more, zf 811(v) = 0, then
01(611 2 61(¥)) =0 and 8r7(0rr 0 67(3)) =0.

Proof. Since the boundary operators 8 and the coboundary operator d; act on each direct summand
separately, the first claim 8; 067 (1)) = 9 is obvious from (#-17). On the latter claim: pr>m(9rr odr(y)) =
0, let us assume that pr>m(0rr 0 67(v)) # 0. Since the boundary operator Orr raises strictly the twist

degree of the Ogus complex by the small remark on {M; ) 5} after (#-7) and the coboundary operator d;
keep the twist degree, we see easily that prom () # 0, which is a contradiction. The remainder is trivial.

Now we come to the stage where we can construct the homomorphism X which fits into the diagram
(#-15). By the Lemma (1.9), the complex :

. 0,9—1 aﬂ.‘l—z
(],q_ incl. =0,g—1 311 =0,0—2 II .
0 —— Ker(6;; ") —— Ex)p —  Ex/p —_—
(#-34)
=0,1 —0,0
_ = —_— = =0 y O » 0
XjP 601 X/P F can ’ =%

0,2
g II

is exact. Taking their I'. (P, —), we obtain a truncation of the complex of S-modules (#-4), which means
that K er(@?}q—l) = Z}(f). Since the resolution (#-4) is minimal, we may assume 1 < ¢ < h and m 2 g,

otherwise I'(P, Z)(f) (m)) = 0 and we do not have to describe the syzygy class map explicitly.
Now we define:

q=-2

(45 Xi= [[ (@350 o 6p07Y) : S5l m) — S (m).

u=0

(@) Z0.g-1 . (a-1)y =D, -
Return to the fact that Z¥’(m) C E375 (m) = 69 Op (m — my ) € for a global section

¥ € I'(P, Zj(f)(m) and the m-test projection prom of =¥ /Pl(m) we have pr>m(¥) = 0. Applying
Lemma(1.11) inductively, we see that A(C(P, 2\ (m))) C T(P, Ker(83~°)) N8 (T(P, 2% 31 (m))) €
HO(P, Ix ® 037 (m)).
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To show that this homomorphism A of abelian sheaves make the diagram (#-15) commutative, let us
recall Remark (1.2). Suppose that an element ag € T'(P, Z )(g)(m)) is given. For integers i =1,...,¢—1
and j=1,...,q, we put

i—1
(#-36) ai = [0 0677 ) a0), by =1 (ajm0),  ag = po(by).

u=0
Then we obtain a system of elements {a;}?_, and {b;}3_; as in Remark (1.2). By the definition of X

above, we get ag—; = X(ag). Thus we have only to show that

= 1
(#-37) ag-1 ED(PIx @0 (m))  ag= (=) -d1(ag-1) € (P, 0 |x(m)).

Let us consider precisely the process of getting aq from e,y € (P, ng_/i;o(m)), where the space
pe Eg{_/};o(m)), namely I'(P,£% 7 (m)) corresponds S ® A9~V in the diagram (#-14). The element
b = 61(ag—1) € T(P, sgggp(m)) is written as by = Vog(ag-1) = (%) - Vog(ag-1) € (P, 5% (m)). Then,
the canonical image a, € Rx ® A7V of b, can be consider as the element aq € I'(P,£%(m) ® Ox) which
is the image of b, by the canonical homomorphism X% (m) — £%(m) ® Ox. On the other hand, since
aqg—1 = Or1(bg—1) € Im[0y; : ng'/i;l (m) — E‘g{_/},’o(m)], we know that a,_; € I'(P,Ix ® 2% (m)). Now
we define a homomorphism of abelian sheaves:

Ven = (can.) o Vog o (incl.) : Ix ®TL Y (m) —— 25 (m) —— ZL(m) —— £%(m) ® Ox.

Then we can summarize the argument above and see that aq = (,—:;) -_V—EN(aq_I). Moreover, from the
construction of the element a,_;, we see that a,_; € Ker[d; : E}?};D(m) — E}'ﬁg‘ﬂ (m)], namely there

is an element d,_; € I'(P,Ix ® Q%' (m)) such that @(g-1)-EU(Ag—1) = ag—1 (on a(g—1)—py, see (#-50)
with replacing ¢ by ¢ — 1). In other words, dq—1 =a,—; in S ® AI"1V. Now we recall the following
diagram from Proposition 2.1 of [14] (N.B. in [14], d; was a misprint of d;. To avoid needless confusion,
we change the previous symbol Vg of [14] into the new symbol Vg in this paper).

Qfg=1)= i gla—1) L
0 — Ix ®0%  (m) 22, 1y @38 (m) 20 Iy @ 552 (m)
(#‘38) ‘[dz lVEN l —VEen
5T =) i
0 —— 0x(m) =% $i(m)®0x —— £%'(m)®Ox.

Starting from the element Gy EN(PIx ® qu_l(m)), apply the diagram (#-38) above, we see that
-0 ((%) - dr(dg21)) = (£)VEn(ag—1) = a,. Thus we obtain (£-37).

Combining the construction above of A with our previous results, we have the following theorem on
the syzygy class map.

Theorem 1.12 (cf. [13], [14]) Let X be a projective subscheme of P = PN(C) which satisfies arith-
metic Dy condition, namely Rx = Rx. Then, the map r : H*(P, Ix ®0%L(m)) - H (X, Ny, p®@Q%(m))
is injective, or equivalently, a global obstruction vanishes if and only if its 1-st infinitesimal obstruction
vanishes. In the space H'(X, Ny, p(m) ® Q}), all the three subspaces Im[3rr o di], Im|Lx] and the

space of infinitesimal obstructions Im[drpr) coincide with each others. A composed map :
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(#-39) 3
P D(P, 2 (m)) —— HO(P,Ix ® 0% (m))

=% HOX,0%(m)lx) 2Ly Imfger) € HY(X, Nx/p ® 2(m))

is surjective onto the subspace Im[6ppr). Its kernel coincides with the subspace Zio Zy (P, Z §§) (m—-1)).
Thus the homomorphism p'9™) induces an isomorphism p(@™) : T, (P,Z §g))(m) & TorS(Rx, S/ 84)m) —
Im|drpy]. The map p(@™) 45 called the g-syzygy class map for degree m part.

Remark 1.13 To see that, up to Op-linear isomorphisms of Zﬁg) ’s, the map p(@™) is independent from
the choice of graded minimal free resolutions, it is enough to see the following commutative diagram which
show the factorization of the map p'@™) into three intrinsic maps : “can.”(the canonical quotient map),

A, and dppp.

p(q.m}

H(X, Nxp ® Q% (m))

(#_40) can. % | lﬁLpT

(P2 (m)) /37 2 - T(P, 2@ (m ~ 1)) —— HO(X, 2% (m)\x)/Tm{HO(P, 0% (m))]

(P, Z§ (m))

On the map A being intrinsic, we can confirm it as follows. The graded minimal free resolution
is unique not only up to chain homotopies but also up to chain isomorphisms which can be described
completely as is well-known (¢f. Lemma 1.3 of [15]). Chain isomorphisms cause Op-linear isomorphisms

of Zi?) s and compatible isomorphisms of the key diagram (#-14), which induce compatible Op-linear
isomorphisms of ng) 's for the maps \’s.

§2 The Main Result

Let us recall the resolution (#-4), the coefficients {M,g?} in (#-7), and calculate the syzygy class map

p{%™) explicitly. We may assume 1 < ¢ < h and m > g, otherwise I'(P, Z }g’ (m)) = 0. For integres i, j,
k, and a with the four conditions: 0 < a < N;1<i< hi1<k<o(i—-1);1<j<o(i), we put:

i i 0]
(#-41) ,u,(:,‘j) g M;S,;/Zam .

Now we take a global section 9 of Z )(g)(m):

(#-42)
olg-1) o(g—1)
Y= Y M, e eT(P, 2% (m)) CT(P, EXip(m) = @ I(P,0p(m—m{EV))els-D
u=1 u=1
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Then, similarly to (#-6) and (#-41), we define:

(#-43) by :i=m—m{D (") =M, /Z‘s
For an integer v = 1,...,q — 1 and moving indices t(1), #(2),---, t(u) with 1 < #(1) < o(g —
1), -+, 1<t(u) <o(g—u),if m>m ?1)1) > > mt(? )“) > 1, we set a positive rational number :
oo 1
(#_44) Ct( )y ,2(1) = E H q-_s) c Q>9 )

11— My

otherwise we put ct(#)»:t(1) =, . _
Recall Corollary 1.6 and apply the Ogus derivation Vpg to the sections M,ﬁ’j e I'(P, OP(J,(:,})) and

M, e [(P,Op (5;)) by regarding the line bundle Op(*) as the sheaf of Ogus pseudo 0-forms Sgp(l} /P /c(*)'
On an open set U C D, (Z,), we have:

(#-45)
() o T (MDY = T (a0 @ 705
My ° oa( k,g) G(;U ki ©Za )
i - N 3 .u(:'.a) 6[:}_1 N a‘u(l ,a) ’:i 1
= {,s,g’g_. ui _ _&a(%)mﬁzm}dzm 27 3 i el

(#-46) —
Ta = Voc(M.) = Vog(us? ® Z8)

{Ju NS (z)a‘ﬂ“—y%;z) }dZ g Zh11 5 m—&)«—; . dZ, ® Z81

r=0,r#a r=0,r#a

Then, we see that n{; € (PS5 ) pc(0L%)) and 7y € T(P,Th ), p/c(8u)) with Vog-closedness,
namely Vog(n k,g-) =0 and Vog () = 0.

Main Theorem 2.1 (Explicit form of the Syzygy class map) Under the circumstances, the g-syzygy
class map for degree m part:

(#-47) p@™ : T(P, 29 (m)) — HY(P,NV(m) ® 0%)

sends the section ¢ € (P, Z_gf) (m)) in (#-42) to the class which has the representative of the first Cech
cocycle in C1({U,}, NV (m) ® QL) coming from C*({Us}, Ix (m) ® Q}) as follows. .

(#48)  pO™ (W) = [{UaNUsy o)},  {UaNUs, wyp)} € CH({Ua}, Ix (m) @ 0F)
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(a) o(g~1) a(l)
e ?—1!7 3 t(g=1),- 2(1)
¢ _ = o 3t
a,b gq-1)! {t(]):l t(g—1)=1

J14J25000 1Jg—1
" __ 4
g (a) (g-1) (g—1,a) (1) (1,2)
(5:(1) :”:(1)) (5t(z),a(1) 'ut(z),t(l}) (51,z(q-1) “1,:@;-1))
det 8 1) 8 uiTo e 3 Wty
8(Z;; /Za) 8(Z;, /Zz) e 9(Z;,/2a)
0 i3 &g 2 o
3(Zi,_1/2a) 3 Zrq_y/2a) e 3%,y /Za) |

-1 ; .
F0) a(@)na(a)noona(ae) o
Remark 2.2 Let us return to the setting (#-36). In case of ag = 1, it is very difficult to get a “canonical”
representative of p'9™) (3h) in Cech I-cocycles directly from the element aq € HO(X, Q0% (m)|x). Usually,
the calculation of éprr(ag) includes a serious ambiguity coming from C°({Ua}, NV (m) ® Q%), which
makes the infinitesimal lifting problems into a great labyrinth of infinitly many higher obstructions.

Proof of Main Theorem. To avoid the difficulty described in Remark 2.2, let us recall several results
from [14] on the Ogus complex. By [14], we already know that taking the wedges of the short exact

sequence:

(#-49) 0 —— Qyy/p(m) i~ Sk wye(m) P H™ » 0,

we can decompose the Koszul-Ogus complex (£, swys(m), k) into the short exact sequences:

+1
E.GT,{/W/B (m) 0

rla+1)
Big+1)—-EU
Bq-BU

QEV/B(m) = Zhwyp(m) =— Q%;F/Ig(m) e

Qg-EU
Q(g—1)—EU
rla)

0 ng_/tws (m).

(#-50) 0

where the middle horizontal sequence in (#-50) coincides with the g-th wedge of the short exact sequence
(#-49). As we know by Lemma 1.14 of [14], putting Yg-EU = Bg+1)-EU © Vg!g;, we see :

(#‘51) Yg—-EU CQq_Ey =M+ Za ng/}g (m) —=2 QEV/B(m)a
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and that the homomorphism of abelian sheaves v,_pgy is a differential operator of order 1. Using this
homomorphism ,— g7, we build up an exact commutative diagram by the the middle horizontal sequence
in (#-50) tensored with the sheaf of defining ideals Ix/w of a closed subscheme X in W and the two
horizontal short exact sequences in (#-9) replacing P by W/B.

(#-52)

) —
0 —— Ixyw ® Yy p(m) == Inyw ® By 5(m) —— Ixjw ® Wy jp(m) —— 0

(Xm)l 1%_5:; 1—0!;

0 — Lywe®ym) —  Qpm)  ——  Opmlx  — 0
aLFr BrLrr
| l |
0 —— Ny ®Qpyp(m) ——  Qpmllxy, — Nyp@ix ——0
oLFT BrLrr

The homomorphisms agx and Sz above are the restrictions of the homomorphisms ay— gy and 8, pu,
respectively. Taking the long cohomology exact sequences of (#-52), we get:

(#-53) 3pprodr=(-m)-rodpy : HOW,Ix ® Ol '5(m)) — HY (X, Ny,w ® Q) 5(m)).

Let us recall that the extension class of the short exact sequence (#-49) with putting m = 0 is the
same class of 1-jet sequence of H, namely the first Chern class ¢;(H) € H*(W, iy ). Using the similar
argument in [7], once if we have a global section of H(W, Ix ® Qf,;/lB (m)), then, by tensoring the global
section, we can compare the top horizontal exact sequence in (#-52) with (#-49) for m = 0 and see that
the map dgn coincides with the map by coupling the first Chern class Ucy (H).

Now we return to the case : W = P = PV(C), H = Op(1), and B = Spec(C). We can calculate
c1(0Op(1)) € H*(P,§}) as the extension class of the short exact sequence (#-49) with putting m = 0
and see that

(#-54) a(0p(D) = [{Tan Ty (26/2:)7 - d(Zo/2:)} | € H({Ua), ).

Let us start by putting ag = % in (#-36). Then, applying the equality (#-53),

(#-55) i
O™ () = 81rr o (—)dr 0 X(¥) = —r 0 b 0 X(#) = —[e1(O0p(1)) U dg1] = ~[dgm U (02 (1)),

where d;=; € T(P,Ix ® Q% (m)) and a(y_1)_pu(Ggmi) = ag—1 € T(P, T (m)) = D(P,EY B (m)).
Essentially, the elements @,_; and aq_1 are the same. However, there is a difference in the efforts to get
their explicit local expressions. Thus we use different symbols to distinguish them.

By the equalities (#-54) and (#--55), once we get the local expression of d,—; on the open set U, as in
Lemma 2.5 in the sequel, we easily get wa 5 = —(dg—1|v. )A((Z6/Za) " 1d( 26/ Za)) € T(UaNUs, Ix ©Q% (m))
as in the Main Theorem. ]
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In the remaining part of this paper, we calculate the local expression of a;_; on the open set U, =
D, (Z,) by the following three lemmata.

a(g—1)

Lemma 2.3 For an integer u=1,... ,g— 1 and a section ) = E Mt(l)eg'(?l_)l) e I'(P, Zﬁg’ (m)), with
t(1)=1

putting ap := v and applying the definition (#-36), we get a global section a, of E_(,:.’/'g;u_l)(m):

(#-56)

u+1)u U(q—l) a’{q*uhl) _—
au — (—I)K_I_L Z “aa Z m - ct(u)i ,t(l) Ad;((qu+1))'t(n)
t(1)=1 t(u+1)=1 (—1) ( i
(g—u+1 —u+2) -1 oppear =
ﬂt?u)?t(u?-l) A ’?E?u-un,:(u-z) Ao ANy i1y AR Cyfut)

In particular, if u = g — 1, then Fy = S, which implies egg) =1€8, mgg) =0, and o(0) = 1, namely
t(g) = 1, thus we have

(#-57)
o(1)

_qy (a=1) g
ﬂ-q_l = (----1)"122_1Z z s E m -« ct(qu)f” lt(l) (pg“:{aq)_l) ® Zal’ & 1))
t(1)=1 t(g—1)=1

2) (3) (g-1)
Tita—1).tta-2) Nig-22.60-9 N+ M leGayatay A e
Proof. Apply the induction on the integer u. Since each 17,(::} 's and 7, ’s are Vpg-closed by the equalities
(#-45) and (#-46), we have only to care the term M‘¢ ") by Lemma 1.3 to get the section b, =

t(u+1),t(u)
6797 (ay) in the process of carrying out this induction. Recalling the fact that

o(g—u-1)
Z,g—u—1 —u—1 —u—1
(#-58) =§cfp (m) = @ Eb50)/P/C (m—mEE’uH) )) e'E?u-:l) :
t(u+1)=1
to check the coefficients 1/(m — mg?;_:‘l_)n) arising from the revised Ogus derivation V, it is easy to see
that
(#-59)

bu+1 = E (—1)—_2_ E e E m - ct(u+1)|"’-t(l)

o(g=u-1) ( (s @la=1)  olg=u)
t(u+1)=1 t(1)=1 t(u)=1

(g—u (q—u+1) (¢-1) ey (g—u—1)
Mt ittu) N Migaystunty N+ ATy oy A "1(1)) €lut1)



Reports of Graduate School of Material Science and Graduate School of Life Science, University of Hyogo No. 18 (2007)

Lemma 2.4 On the same assumption of Lemma (2.3), the local expression of the element ag_, €

(P, E}_/i_.;o(m)) on the affine open set D, (Z,) is given as follows. Here, the mark — means remov-

ing the object on the mark.

(#-60)

8g-1|p, (20 =

-1 o(g—1) 0'(1) (a) y
(—1)_(5,_.!" B e 5 o m'ct(q_l)""‘t(l)'ﬂﬁ'(g_n

t(1)=1 t(g=1)=1 J1,J2,.-,Jg-1

8 b a ”(1‘—1#) ) ;—(-ﬂ_)-

2,a)
He(q—1),t(g—2 £(2),8(1 (1 A . m—g+1
A %,1 }Za.i 5225'_2 /Za) 8(Zi,_,/2%a dZj A A dZJq_l ® 27

_yy olg=1) o(1) q-2 (a)
+ (Y .y 3, (=10t ¥y
t(l):l t(q—1)=1 w=1 j1|j2|'“ '{'u"g---jq—l
N 8 (w+1,a)
—1),-,2(1 (1,a) (w+1) (w+1,n) _ Z, Botgm ), blg=iv=
m- C"’(q Dst(1) #Lt(q_l){Jt(q—w),!(q—w—l) ' “’t(q—w),t(q—w—l) r=02r¢a(ﬁ)_%z—3/ﬂz,;)_u}
8 pids s w  0uEN ouE) w -
52(%: z::{:j R qu_zz't ln ] Zj,.-:l/Z., dZa NdZjy N=vv = oo A dZJ'q—l ®Z7 e
_y olg=1) a(l) (a)
G i DERITEED DI G VB >
t(1)=1  t(g-1)=1 J1s32400 1Jg—-2
. — N 8 nl@
1), 500 (1,a) (a) P Hy

(g—1,0)

8 #Ez;u—)l).t(q—?- 8 Bizy et m—g+1
EIZ,-IEZ.S e qu—z' Za dza A del Ansay dzjq—l ® Za
Proof. Substitute (#-45) and (#-46) for each ‘r,r,(:’-)7 ’s and 77, ’s in the right handside of the equality (#-57).

Then apply the equalities (#-6) and (#-43). ]

Lemma 2.5 Under the circumstances, the global section aq_; € I'(P,Ix ® qu"-l (m)) which satisfies
a(g-1)-£eu(@q-1) = ag_1 € T'(P, E"P_l(m)) =R E}_/};o(m)) has the following local ezpression on the
affine open set D (Z,). :
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(#-61)
(a) o(g—1) (1)
St — 1 t(q_l)w"' lt(l)
e gl » S s YT @
q |D+(zu) q—1)! P {t(1)=1 e
. g s .
(a) (g—1) (g—1,a) (1) (1,0)
(5:(1) !u‘t(l)) (‘5:(2),:(1) lu‘t(2),t(1)) (61,t(q—1) l‘1,t(q—1))
8 @), 8 wla=1®) 8 pthe)
t(1) t(2),¢(1) 1,t(g—1
det | Fz72 ;. /2) 5Z; 172)
43 0 ity 0 i
L B(qu_l/zu) B(Z,-q__lfza) e 5[.2',-‘;!_1/2‘l
}d(%}) A---Ad(-—%) ®Zr

Proof. By the equality (#-51), we see that (1/m)v(g—1)-gu(ag-1) = ag—1. To get a1 from a,_y, it is
enough to apply the formula of v(,_;)- gy in Lemma 1.17 of [14]. 1
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