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Abstract

Inspired by our recent results [16] and [17], we generalize one of our previous problems into “Par-
allelogram Conjecture” (cf. Working Hypothesis 1.15). From the view point of this conjecture, we
study good homological shells of a projective curve X ⊆ P5(C) which is presented as a transverse
intersection of two Segre 3-folds V and V σ in general position. In particular, we show that V and V σ

are isolated in the universal family of homological shells of X. It is already known that the number
of the weak shell equivalence classes of a fixed projective subvariety is always finite (cf. [18]). And
this example shows that for a fixed Hilbert polynomial, there may exist more than one weak shell
equivalence classes. From this example, we can also see that even for a fixed Hilbert polynomial, the
parameter space of the universal family of homological shells with the Hilbert polynomial may not
be connected.
Keywords: Segre 3-fold, cut by an arthmetically Cohen-Macaulay scheme, homological shell (=pre-
geometric shell), good homological shell

§0 Introduction.

Also in this article, it is still our main concern to study the “geometric structure” of a given projective
embedding of a projective variety from the view point of homological shells (cf.[8]∼[18]). In our paper
[15], we raised a problem on the structure of the graph of homological shells of a projective subvarietyX ⊆
PN = P which is presented by a hypersurface cut of a projective variety W with dim(W ) = dim(X) + 1
(cf. Problem 1.14 below). After the paper [15], we introduced newly two kinds of equivalence relations
on homological shells (cf. [16]). Hence we can consider new types of graphs, the graphs of homological
shells up to these equivalence relations. On the other hand, in [17], we generalized the hypersurface cut
to the cut by a locally Cohen-Macaulay projective subscheme with relatively large arithmetic depth.

Then, these new points of view bring us a generalization of that problem as a new working hypothesis
(cf. Working Hypothesis 1.15), which will be called as “Parallelogram Conjecture”.

To verify this working hypothesis by studying homological shells of a concrete example, we need a
test example with a relatively small codimension which is not obtained by successive hypersurface cuts of
a projective variety. Thus we consider good homological shells of a smooth projective curve X ⊆ P5(C)
of degree 9 which is a transverse intersection of two Segre 3-folds one of which is translated generally by
PGL(6,C)-action.
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We should make a remark that to handle this example, it is enough to apply Prof.M.Hashimoto’s
Remark (cf. [8] Proposition 1.4) and not necessary to apply the main result of [17]. It would be interesting
to study examples which need truly the result of [17] (cf. Theorem 1.6).

The author would like to express his deep gratitude to Prof. A. Ohbuchi for answering to his question
on the curves with satisfying the condition described above by constructing a good example of a curve
embedded by a super canonical linear system. It was mysterious that this curve is slightly different from
the curve which the author independently constructed by using another super canonical linear system.
At this stage, this mystery is not really illuminated yet but which gives a stimulation to study the objects
handled in this paper.

§1 Preliminaries.

Let us recall our two fundamental conjectures on homological shells from [8] and [9]. By the influence of
[15], we refine the claims of these conjectures.

Conjecture 1.1 Let P = PN (C) be an N-th projective space with the tautological ample line bundle
OP (1) = OP (H) and V ⊆W ⊆ P its closed subschemes.

(1.1.1) Assume that the scheme V is a variety, namely reduced and irreducible and that the closed
subscheme W is a (good) homological shell of V . Then the subscheme W is also a variety (if
necessary, we may move W up to weak shell equivalence).

(1.1.2) [∆-genus inequality conjecture] Suppose that the subscheme V is arithmetically D2, namely
its arithmetic depth ≥ 2. If W is a (good) homological shell of V , then the inequality:

∆(V,OV (1)) ≥ ∆(W,OW (1))

holds on their ∆-genera.

Now let us review several known or elementary facts as preliminaries.

Lemma 1.2 An exact commutative diagram of abelian sheaves are given as follows.

0 0 0y y y
0 −−−−→ A1

α1−−−−→ A2
α2−−−−→ A3 −−−−→ 0

f1

y f2

y f3

y
0 −−−−→ B1

β1−−−−→ B2
β2−−−−→ B3 −−−−→ 0

g1

y g2

y g3

y
0 −−−−→ C1

γ1−−−−→ C2
γ2−−−−→ C3 −−−−→ 0y y y

0 0 0

Set ρ = g3 ◦ β2 = γ2 ◦ g2, σ = f2 ◦ α1 = β1 ◦ f1, K = Ker(ρ). Then we have a short exact sequence
of abelian sheaves :
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0 −−−−→ A1
σ−−−−→ K

τ1⊕τ2−−−−→ C1 ⊕A3 −−−−→ 0,

where τ1 = γ−1
1 ◦ (g2|K) : K → C1, τ2 = f−1

3 ◦ (β2|K) : K → A3.

Proof. Using the diagonal homomorphism ∆, the difference homomorphism ∇, an isomorphism (f1, α1) :
A1 → B1 ×B2 A2, and the surjectivity of the homomorphism (g2, β2) : B2 → C2 ×C3 B3 = Ker(γ2 − g3),
we obtain an exact commutative diagram:

0 0y y
A1

∼=−−−−→ B1 ×B2 A2 0

σ

y y(β1,f2)

y
0 −−−−→ K

incl.−−−−→ B2
ρ−−−−→ C3 −−−−→ 0

∃
yτ1⊕τ2

yg2⊕β2

y∆

0 −−−−→ C1 ⊕A3
γ1⊕f3−−−−→ C2 ⊕B3

γ2⊕g3−−−−→ C3 ⊕ C3 −−−−→ 0

γ2−g3

y y∇

C3 C3y y
0 0.

Then we apply the snake lemma and get the short exact sequence.

Proposition 1.3 (Corollary of Fulton-Hansen, [3]) Let Y and Z be projective subvarieties of P =
PN (C) with a = dimY and b = dimZ, respectively. If a+ b > N , then the intersection scheme Y ∩ Z is
connected and non-empty.

Theorem 1.4 (Kleiman, [7], or [6] III. Theorem 10.8) Let X be a homogeneous space with group
variety G over an algebraically closed field k of characteristic 0. Let f : Y → X and g : Z → X be
morphisms of nonsingular varieties Y , Z to X. For any σ ∈ G(k), let Y σ be Y with the morphism σ ◦ f
to X.

Then, there is a non-empty open subset U ⊆ G such that for every σ ∈ U(k), Y σ×X Z is non-singular
and either empty or of dimension exactly,

dimY + dimZ − dimX.

Theorem 1.5 (Künneth formula cf. [5] III Théorème (6.7.3)) Let k be a field, X and Y algebraic
schemes over k, E a quasi-coherent OX-module and F a quasi-coherent OY -module. Then

Hp(X ×k Y, π∗
XE ⊗ π∗

Y F ) ∼=
⊕

s+t=p

Hs(X,E)⊗k Ht(Y, F ),

where πX and πY denote the projections from X ×k Y to X and to Y , respectively.
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Theorem 1.6 (Theorem 1.7 of [17]) Let V , W ⊆ PN (C) = P = Proj(S) be closed subschemes,
S = C[Z0, . . . , ZN ] a polynomial ring over the complex number field C, and S+ = (Z0, . . . , ZN )S the
unique homogeneous maximal ideal. Take the homogeneous coordinate rings RV = S/IV and RW = S/IW
of V and of W , respectively. The homogeneous ideals IV and IW are taken as the ones removed S+-
primary components. Assume that:

(1.6.1) V and W are locally Cohen-Macaulay and (topologically) equidimensional with r(V ) = codim(V, P )
≥ 1 and r(W ) = codim(W,P ) ≥ 1 which satisfy r(V ) + r(W ) ≤ N − 1.

(1.6.2) V and W meet properly, namely X = V ∩W satisfies dimX = N − (r(V ) + r(W )).

(1.6.3) There exist non-negative integers k1 and k2 with k1 + k2 ≥ dimX − 1 and

arith.depth(V ) ≥ r(W ) + 2 + k1

arith.depth(W ) ≥ r(V ) + 2 + k2.

Then, the subscheme X is of equidimensional and of locally Cohen-Macaulay, which satisfies

arith.depth(X) = arith.depth(V ) + arith.depth(W )− (N + 1) ≥ 2,

namely the arithmetic D2-condition, Tor
S
i (RV , RW ) = 0 (i ≥ 1), and both V and W are good homological

shells of X.

Notation 1.7 Let us take integers e1 ≥ e2 ≥ . . . ≥ en ≥ 0, d =
∑n

i=1 ei ≥ 2, N = d + n − 1, and put
B = P1(C). Then we set a “rational scroll” S(e1, e2, . . . , en) to be the image W = Im(f) of the birational
morphism f : U = Proj(Sym(⊕n

i=1OB(ei))) → PN (C) = P determined by the tautological line bundle
OU/B(1). The variety W is of dim(W ) = n and has deg(W ) = d, which is singular if and only if en = 0.
In our case, instead of the variety U , we call the variety W as a rational scroll for simplicity.

Theorem 1.8 (Green’s Kp,1-theorem [4]) Let Z ⊆ PN (C) = P be a linearly non-degenerate subvari-
ety of dimension m. For p = N −m − 1, if TorSp (RZ , S/S+)(p+1) ̸= 0 and deg(Z) ≥ p + 4, then there
exists a subvariety Y ⊆ P of minimal degree such that Z ⊆ Y and dim(Y ) = dim(Z) + 1.

− ∗ −

Let us recall and summarize our strategy for classifying the homological shells of a given projective
subvariety X ⊆ PN (C) = Proj(S) = P which satisfies the arithmetic D2-condition. By the influence
of our results [16] and [18], our knowledge on the movement of homological shells increase massively.
Thus some part of our procedure is newly improved here from the one in [15]. We first determine
the graded Betti numbers {βq,m(X)} of X, namely βq,m(X) := dimC TorSq (RX , S/S+)(m). Then a
minimal graded S-free resolution FX,• of the homogeneous coordinate ring RX = S/IX has a form :
FX,q = ⊕mS(−m)βq,m(X) (∀q ≥ 0).

Now suppose that a closed subscheme W ⊆ P is a homological shell of X. Then we have inequalities
0 ≤ βq,m(W ) ≤ βq,m(X) (0 ≤ ∀q ≤ h(X) = hdS(RX) = max{q ∈ Z|βq,m(X) ̸= 0}), 0 ≤ ∀m ≤ r(X) :=
max{m ∈ Z|βq,m(X) ̸= 0}), otherwise βq,m(X) = βq,m(W ) = 0. Hence the number of possible cases of
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{βq,m(W )}q,m is finite. The Hilbert polynomial AW (m) of the scheme W is calculated from its graded
Betti numbers,

AW (m) =
∑

q,m0≥0

(−1)qβq,m0(W ) · dimC H0(P,OP (m−m0)),

which brings us the geometric information on W which includes dim(W ) and deg(W ) as is well-known.
The table of all the possible graded Betti numbers of Homological Shells of X is called as “HS-Betti
table” of X. As a remark, this process can be carried out not only for a closed subscheme which really
exists but also for a series of graded Betti numbers β = {βq,m}q,m which might not be realized by a closed
subscheme, and bring us a polynomial Aβ(m), invariants dim(β), deg(β), and codim(β) = N − dim(β).

Moreover, if we have an interest only in good homological shells of X, by choosing {βq,m(W )}q,m with
the condition : βq,m(W ) = 0 for ∀q > h(X) − (dimW − dimX), we can easily construct also a table of
all the possible graded Betti numbers of Good Homological Shells of X, which will be simply called as
“GHS-Betti table” of X. Since the goodness condition on the homological shells are distinguished by
using the graded Betti numbers, the goodness is kept up to weak shell equivalences.

Remark 1.9 At least in the case that X is not a variety but a scheme, there is an example of a homo-
logical shell which is not a good homological shell (cf. Remark 1.4 of [13]).

Suppose that we have two homological shells W1 and W2 of X. If we have a weak shell equivalence
between W1 and W2, then we see βq,m(W1) = βq,m(W2) (∀q,m) by the definition of the weak shell
equivalence. The converse is not true in general. In this article, we will give a counter-example that
the equalities of the graded Betti numbers : βq,m(W1) = βq,m(W2) (∀q,m) does not imply the weak
equivalence between W1 and W2 in general (cf. Theorem 2.1). However, once we fix the graded Betti
numbers {βq,m}q,m, the number of weak shell equivalence classes of homological shells X is always finite
(cf. [18]).

On the other hand, if there exists an inclusion W1 ⊆W2 of the schemes, or equivalently an inclusion
of the ideal sheaves IW1 ⊇ IW2 in the structure sheaf OP of P , then the scheme W2 is automatically
a homological shell of W1 and βq,m(W1) ≥ βq,m(W2) (∀q,m). However, the converse is not true in
general. Namely the inequalities βq,m(W1) ≥ βq,m(W2) (∀q,m) does not always imply the existence of
the inclusion W1 ⊆ W2. For example, in [16], we study the homological shells of a trigonal canonical
curve X of g = 5 up to weak shell equivalence. Then a quadric hypersurface including X is automatically
a homological shell of X. The dimension of the family of quadric hypersurfaces including X is 3. However
a quadric hypersurface which includes a given homological shell surfaces W with degree 5 is unique. Here
we should make a remark that we do not know the answer to the following problem yet.

Problem 1.10 (Strictness of inclusions) Suppose that there exist an inclusion W1 ⊆W2 of homolog-
ical shells of X and a weak shell equivalence : W1 ∼w W ′

1. Then does there exist always a homological
shell W ′

2 of X with W ′
1 ⊆W ′

2 and W2 ∼w W ′
2 ?

Remark 1.11 Similar to the problem above, we can ask : if there exist an inclusion W1 ⊆ W2 of
homological shells of X and a weak shell equivalence : W2 ∼w W ′

2, then does there exist always a
homological shell W ′

1 of X with W ′
1 ⊆ W ′

2 and W1 ∼w W ′
1 ? But this is not true in general. A counter-

example is given by the same example described above. Namely, let X be a trigonal canonical curve of
g = 5, W1 a homological shell surface of degW1 = 5, W2 = Q a unique quadric hypersuface including
W1. Then rank(Q) = 4. Take W ′

2 = Q′ to b a quadric hypersurface including X of rank(Q′) ≥ 5 (cf.
outside of the closure of the reducible curve D0 in [16] §3), then there is no W ′

1 what we want.

Once we have a HS-Betti table or a GHS-Betti table, to show the possibilities of the existence of
inclusions, we newly introduce a “Betti diagram” which consists of vertices and of arrows as in the
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following definition. Each vertex and arrow represent a series of graded Betti numbers and a possibility
of the existence of an inclusion, respectively. This Betti diagram is a replacement of our previous concept
“maximal inclusion diagram”, which might often lead to confusions. This is one of improvements adopted
here.

Definition 1.12 (Betti Diagram) Suppose that a projective subscheme X ⊆ PN (C) = P with codi-
mension c(X) and HS-Betti table or GHS-Betti table of X constructed through the procedure described
above are given. For a series of graded Betti numbers β := (βq,m)q,m in the table, we set codim(β) to
be the codimension of a (virtual) closed subscheme in P with these given graded Betti numbers. Then
we construct a diagram by placing these series of graded Betti numbers in the table with a hierarchy
depending on their codimensions. The series of graded Betti numbers with the codimension 0, namely
(0, . . . , 0) is placed at the first floor. The series of them with the codimension one are placed at the second
floor. Similarly, the series of them with the codimension k are placed at the (k + 1)-th floor. Finally the
series of them with the codimension c(X) are placed at the top floor. Then for any two distinct series
of graded Betti numbers β := (βq,m)q,m and β′ = (β′

q,m)q,m in the table with codim(β) ≥ codim(β′) and
βq,m ≥ β′

q,m (∀q,m), we draw an arrow β → β′. Finally we remove the arrow β → β′ if there exists a
series β′′ in the table with the arrows β → β′′ and β′′ → β′.

The diagram constructed by this procedure is called as a Betti diagram. The Betti diagrams constructed
from GHS-Betti tables ( resp. from HS-Betti tables ) are called also as GHS-Betti digram ( resp. HS-Betti
digram ).

Once we finish constructing a Betti diagram, for each vertex, namely a series of graded Betti numbers,
we obtain many geometric information on the (good) homological shell W with these data if it exists.
The ∆-genera of the main components with the reduced structures of the (good) homological shell W
are also bounded. Applying primary decomposition, the Mayer-Vietoris sequence, and the classification
theory by ∆-genus (cf. [2]) to the main components of W with reduced structures, we can carry out
the classification of homological shells of X as polarized schemes or projective subscheme if deg(W ) is
relatively small.

After the classification of homological shells for each series of graded Betti numbers is done, we can
replace each vertex (namely a series of graded Betti numbers) in the Betti diagram, by pairs of the
isomorphism classes (cf. which are not weak shell equivalence classes in general,) of explicit projective
subschemes which possess the series of graded Betti numbers, and their ∆-genera. The reason why
we attach the ∆-genera to the subschemes as the pairs at the vertices in the diagram is coming from
Conjecture 1.1. In other words, by drawing this diagram, we can test these conjectures (cf. Remark 1.8
of [15]).

Thus we obtain an “inclusion diagram” which is the same concept as the previous one with the
name “maximal inclusion diagram”(cf. [15]). Here we should make a notice that one vertex in the
Betti diagram, namely one series of graded Betti numbers may be replaced by two or more isomorphism
classes of projective subschemes with dividing suitably the vertex and arrows connecting to the vertex
into several vertices and arrows.

At the stage of reforming a Betti diagram into an inclusion diagram, for a vertex in the Betti diagram, if
we can prove the non-existence of projective scheme with the series of graded Betti numbers corresponding
to the vertex, we have to remove the vertex and the arrows connecting to (or from) the vertex, and redirect
the arrows around the vertex. To explain redirection of arrows, for example, if we have a path of arrows
β → β′ → β′′ in the Betti diagram, and have to remove the relay vertex β′, we draw an arrow directly
β → β′′ if there is no other path of arrows connecting from the vertex β to the vertex β′′. In case
of checking the existence of other path of arrows connecting from the vertex β to the vertex β′′, it is
prohibited to follow the arrows in reverse directions. Hence, at the stage of constructing an inclusion
diagram, we do not have precise knowledge on the existence of inclusions, weak shell equivalence classes
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or strict shell equivalence classes of the homological shells which have the same series of graded Betti
numbers.

At the final stage, we study the parameter spaces of universal families of homological shells with a
given series of graded Betti numbers. By using also Koszul graph maps (cf. [18]), we can determine the
weak shell equivalence classes and the strict shell equivalence classes. Depending on these results, we
divide or fuse the vertices and arrows in the inclusion diagram. Here we have to make a notice that the
∆-genera are invariants up to weak shell equivalences with assuming the arthmetic D2-condition on X.
For two weak shell equivalence classes [W1] and [W2], they are connected by an arrow [W1] → [W2] if
there exist two representatives V1 ∈ [W1] and V2 ∈ [W2], and an inclusion V1 ⊂ V2. Otherwise, we remove
the arrow and redirect it. If for any representative V1 ∈ [W1], there exists a representative V2 ∈ [W2]

and an inclusion V1 ⊂ V2, then we denote it by [W1]
strict→ [W2] and say that the inclusion is strict.

The diagram constructed by these procedure is called as a “complete inclusion diagram”. The concept
of complete inclusion diagram is rather similar to our previous concept “strict inclusion diagram”, but
is slightly different from that a priori. If Problem 1.10 is solved affirmatively, then all the inclusions are
automatically strict and the both concepts coincides with each other.

Definition 1.13 (Complete Inclusion Diagram) Similar to Betti diagrams, a complete inclusion di-
agram for the (good) homological shells of X is a diagram which consists of vertices and arrows. Each
vertex represents a weak shell equivalence class of the homological shells of X and its ∆-genus, and an
arrow [W1] → [W2] does the situation that there exist two representatives V1 ∈ [W1] and V2 ∈ [W2], and
an inclusion V1 ⊂ V2. A complete inclusion diagram for the (good) homological shells of X is denoted by
CID(X).

− ∗ −

Now we apply the strategy described above to a specific example handled in this article.
Let V be the image of a Segre embedding P1×P2 → P5(C) = P . It is well-known that the homogeneous

coordinate ring RV of V is Cohen-Macaulay and has a graded minimal S-free resolution 0← RV ← FV,•
of the form:

FV,• : 0← F0 = S ← F1 = S(−2)⊕3 ← F2 = S(−3)⊕2 ← 0.

By taking a sufficiently general projective transformation σ ∈ PGL(6,C), Proposition 1.3 and Theorem
1.4 show that V and V σ meet transversely and that the intersection X = V ∩ V σ is a connected smooth
projective curve. Then we can apply Prof.M.Hashimoto’s Remark (cf. [8] Proposition 1.4)), or more
generally Theorem 1.6 and see that the graded minimal S-free resolution FX,• is isomorphic to the
complex FV,•⊗FV σ,• and TorSq (RV , RV σ ) = 0 for q ≥ 1, RX

∼= RV ⊗RV σ . In particular, by FV σ,•⊗RV ,
we have an exact sequence:

0← RX ← RV ← RV (−2)⊕3 ← RV (−3)⊕2 ← 0,

whose sheafication brings a short exact sequence:

0← IX/V ← ⊕3OV (−2H)← ⊕2OV (−3H)← 0, (#-1)

where OV (H) = OP (1) ⊗ OV . Since FX,• ∼= FV,• ⊗ FV σ,•, we obtain that β0,0(X) = 1, β1,2(X) = 6,
β2,3(X) = 4, β2,4(X) = 9, β3,5(X) = 12, β4,6(X) = 4 otherwise βq,m(X) = 0. We obtain the Hilbert
polynomial AX(m) = 9m − 3 from these graded Betti numbers. Thus deg(X) = 9, ∆(X) = 4, the
geometric genus g(X) = 4. Now we assume that a closed subscheme W ⊆ P is a good homological shell
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of X, by using the process of constructing GHS-Betti table described above, we obtain Table 1 except
the description on the irreducibility and on the reducedness.

Case No. codim (β1,2, β2,3, β2,4, β3,5, β4,6) of W deg ∆ irred. / red.
(1) 4 (6, 4, 9, 12, 4) 9 4 Y/Y
(2) 3 (4, 2, 3, 2, 0) 6 2 ?/Y
(3) 2 (2, 0, 1, 0, 0) 4 1 Y/Y
(4) 2 (3, 2, 0, 0, 0) 3 0 Y/Y
(5) 1 (1, 0, 0, 0, 0) 2 0 Y/Y
(6) 0 (0, 0, 0, 0, 0) 1 0 Y/Y

Table 1: GHS-Betti table, +the degree and ∆

Figure 1: GHS-Betti diagram of X = V ∩ V σ

Let us study a good homological shell W of X which satisfies one of the cases (1)-(6). The scheme W
is automatically arithmetically Cohen-Macaulay by the assumption of goodness, and therefore of equi-
dimensional. Obviously, by taking notice on β1,2, Case(6) W = P ; Case(5) W = Q an irreducible quadric
hypersurface ; Case(3) W is a (2, 2)-complete intersection ; Case(1) W = X.

For Case(3), to see the irreducibility and the reducedness of the scheme W , we take an irreducible
component W0 of W which includes X and give it a reduced structure. Since the curve X is linearly non-
degenerate, we see that 4 = deg(W ) ≥ deg((W0)red) ≥ 3. If deg((W0)red) = 3, the variety Y = (W0)red is
a variety of minimal degree and TorS2 (RY , S/S+)(4) = 0. From the inclusions X ⊆ Y ⊆ W , the induced
map C ∼= TorS2 (RW , S/S+)(4) → TorS2 (RX , S/S+)(4) is a zero map and not an injection, which is a
contradiction. Thus deg((W0)red) = 4 and W = (W0)red. This means that the scheme W is irreducible
and reduced. If we take a quadric hypersurface Q of V and a quadric hypersurface Q′ of V σ, then the
subscheme W = Q ∩Q′ realize Case (3).

For Case (4), by using the same argument for Case (3) and that W is of equi-dimension, it is easy to
show that W is a variety and of minimal degree. Applying the well-known classification on the varieties
of minimal degree (cf. e.g. [2]), we see that the variety W is a rational scroll of the form S(e1, e2, e3)
with e1 ≥ e2 ≥ e3 ≥ 0 and e1 + e2 + e3 = 3, namely (e1, e2, e3) = (3, 0, 0), or (2, 1, 0), or (1, 1, 1). The
Segre 3-folds V and V σ are the scrolls of the same type S(1, 1, 1) and good homological shells of X. As
we show in the next section, V and V σ are isolate in the universal family of homological shells of X.
Namely, e.g. if W ∼w V , then W = V . We guess that for Case(4), W = V or W = V σ are the only
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cases, and have two questions, which are still open.

Question (i) Can other types of scroll, namely S(3, 0, 0) and S(2, 1, 0) appear as a good homological
shell of X ?

Question (ii) If W ∼= S(1, 1, 1), then W = V or W = V σ ?

Now we consider Case (2). Let us take the Segre 3-fold V , a quadric hypersurface Q′ of V σ, and set
W = V ∩Q′. Then the subscheme W realize Case (2).

Next we show that a good homological shellW satisfying Case (2) is reduced. Let us take an irreducible
componentW0 ofW which includesX. SinceX is linearly non-degenerate and deg(W ) = 6, the inclusions
X ⊆ (W0)red ⊆ W implies deg((W0)red) ≥ 4 and W0 = (W0)red. Now we assume that deg(W0) = 4.
Then the surface W0 is a variety of minimal degree, whose homogeneous coordinate ring RW0 has a
2-linear resolution as a graded minimal S-free resolution. In particular, TorS2 (RW0 , S/S+)(4) = 0. On the
other hand, by the definition of homological shell, the inclusions of closed subschemes X ⊆ (W0)red ⊆W
must induce the injective map TorS2 (RW , S/S+) → TorS2 (RX , S/S+). However, this map has a natural
factorization TorS2 (RW , S/S+) → TorS2 (RW0 , S/S+) → TorS2 (RX , S/S+). By taking their deg = 4 part,
we have an injection : C3 ∼= TorS2 (RW , S/S+)(4) → TorS2 (RW0 , S/S+)(4) = 0 → TorS2 (RX , S/S+)(4),
which is a contradiction. Thus we have deg(W0) ≥ 5, which implies W is a variety or W = W0∪L, where
L denotes 2-plane. Hence we see that Wred = W .

Now we assume moreover that the scheme W is a variety. We apply Green’s Kp,1-theorem, namely
Theorem 1.8 to Z = W by setting p = N − m − 1 = 5 − 2 − 1 = 2. Since deg(W ) = 6 ≥ p + 4 and
dimTorS2 (RW , S/S+)(3) = β2,3(W ) = 2 ̸= 0, we have a variety Y of minimal degree such that W ⊆ Y
and dim(Y ) = 3. Then the variety Y is a good homological shell of X, which fits into Case (4), and
β1,2(Y ) = 3. By using β1,2(W ) = 4, we can find a quadric hypersurface Q′ satisfying W ⊆ Q′ and Y ̸⊆ Q′.
Then both schemes W ⊆ Y ∩Q′ are of pure dimension 2 and of deg = 6. Thus we have W = Y ∩Q′.

− ∗ −

In our previous article [15], we raised the following problem.

Problem 1.14 (Problem 1.12 in [15]) For a projective subvariety Y ⊆ PN = P , we set the family
of (good) homological shells of Y : HSF (Y ) := {(good) homological shell of Y } ⊆ P(P ), where P(P )
denotes the power set of P . Let us assume that a projective subvariety X ⊆ PN = P satisfies arithmetic
D2-condition and is represented as the transverse intersection of a projective subvariety V ⊆ P with a
hypersurface D ⊆ P , then does the following equality hold as the subsets of P(P )?

HSF (X)
?
= HSF (V ) ∪ {W ∩D | W ∈ HSF (V )}

Inspired by our recent results [16] and [17], we generalize this problem to the following conjecture as
one of our working hypotheses.

Working Hypothesis 1.15 (Parallelogram Conjecture) Let V , W ⊆ PN (C) = P be closed subva-
rieties of linearly non-degenerate. Set X = V ∩W and assume the same conditions as in Theorem 1.6.
Then, the main result of [17] shows that both of V and W are good homological shells of X. Does it
always hold the following congruency of the complete inclusion diagrams for good homological shells as
directed graphs ?

Φ : {CID(V )× CID(W )}/ ∼w

∼=−→ CID(X), (#-2)
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where we consider that the vertices, namely any weak shell equivalence classes [A] ∈ CID(V ) and [B] ∈
CID(W ) are elements of these complete inclusion diagrams, by choosing representatives A′ ∈ [A] and
B′ ∈ [B] suitably, which are locally Cohen-Macaulay and of equi-dimensional, and meet properly, the
map Φ sends a pair ([A], [B]) ∈ {CID(V ) × CID(W )} to [A′ ∩ B′] ∈ CID(X). Here we have to prove
that we can take representatives A′ ∈ [A] and B′ ∈ [B] which satisfy the conditions above. We have
also to show that for any other representatives A′′ ∈ [A] and B′′ ∈ [B], we have a weak shell equivalence
A′ ∩B′ ∼w A′′ ∩B′′.

Remark 1.16 Under the circumstances of Working Hypothesis 1.15, we will make several remarks.
(i) Suppose that the representatives A′ ∈ [A] and B′ ∈ [B] are locally Cohen-Macaulay and of equi-
dimensional, and meet properly. Set a = codim(A′, P ), b = codim(B′, P ), k′1 = arith.depth(A′)− b− 2,
k′2 = arith.depth(B′) − a − 2. Then, by using the assumption of goodness of homological shells A′ and
B′, we can show k′1 ≥ 0 and k′2 ≥ 0, k′1 + k′2 ≥ dim(A′ ∩ B′) − 1. Thus we can apply Theorem 1.6 to
A′, B′ and Y = A′ ∩ B′. The proof of Theorem 1.6 implies the isomorphisms of graded minimal S-free
resolutions : FY,• ∼= FA′,•⊗FB′,• and FX,• ∼= FV,•⊗FW,•. Since A′ and B′ are (good) homological shells
of V and of W , respectively, each term of the complex FA′,• and of the complex FB′,• is a direct summand
of the corresponding term of the complex FV,• and of the complex FW,•, respectively. Hence we see that
each term of the complex FA′,•⊗FB′,• is a direct summand of the the corresponding term of the complex
FV,• ⊗ FW,•. Thus we show that Y = A′ ∩ B′ is a good homological shell of X. (ii) It is obvious that
A′ ∩B′ and A′′ ∩B′′ have the same series of graded Betti numbers.

To see an example of Parallelogram Conjecture holding, we consider (good) homological shells of
a non-trigonal canonical curve X of g = 5. Since this curve X ⊆ P4(C) = P is a (2, 2, 2)-complete
intersection, it is easy to get its complete inclusion diagram CID(X), which is a diagram in the right
hand side of Figure 2. Since CID(Qi) = {[Qi] → [P ]}, Parallelogram Conjecture suggests that for
S1 = Q1 ∩ Q2, CID(S1) = {[S1] → [Q1] = [Q2] → [P ]}, which comes from the parallelogram with 4
vertices S1, Q1, P , Q2 as in Figure 2. Applying a similar process to X = S1∩Q3, we can obtain CID(X)
in the right hand side of Figure 2.

Figure 2: CID of a non-trigonal canonical curve X of g = 5

Thus, we have an example where the claim of the congruency (#-2) holds. Hence, even if Parallelogram
Conjecture does not hold in general, we still have an interesting problem : Find the criterion for the
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congruency (#-2) holding through the map Φ.

− ∗ −

Now return to our case X = V ∩ V σ. Let us believe Parallelogram Conjecture temporarily and
try to apply this working hypothesis to our case. Since codim(V, P ) = 2, it is easy to obtain the
complete inclusion diagram CID(V ) = {[V ]→ [Q]→ [P ]}, where [Q] denotes the weak shell equivalence
class of the quadric hypersurfaces including V , which form also a 2-dimensional linear system of P and
has V as the base points. Obviously the complete inclusion diagram of V ′ = V σ is the similar one
CID(V ′) = {[V ′] → [Q′] → [P ]}. Now if we forget to take the quotient by the weak shell equivalence,
then the diagram CID(V )×CID(V ′) have the form as in Figure 3. This figure nearly coincides with our
rough classification given above. In other words, Parallelogram Conjecture helps us imagine the result of
classification on homological shells.

Figure 3: CID(V )× CID(V ′) without quotient by ∼w

§2 Infinitesimal deformations of V as a homological shell.

Let us study the tangent space T at V (or at V σ) of the parameter space of the universal family of
homological shells of X = V ∩V σ ⊆ P5(C) = P . Take a (good) homological shell W of the curve X with
W ∼w V . Then the scheme W is irreducible and reduced, and has deg(W ) = 3, codim(W,P ) = 2, and
the Hilbert polynomial : AW (m) = AV (m). The scheme W satisfies Case (4) of Table 1.

Next we take a closed subscheme W ′ ⊆ P which is an embedded deformation of V with includ-
ing X, and is sufficiently near to V . Then the closed subscheme W ′ is also a variety, deg(W ′) = 3,
codim(W ′, P ) = 2 and AW ′(m) = AV (m). Then, W ′ is a variety of minimal degree, or more precisely
a rational scroll of the form S(e1, e2, e3), where (e1, e2, e3) = (3, 0, 0), or (2, 1, 0), or (1, 1, 1). Its graded
Betti numbers are β0,0(W

′) = 1, β1,2(W
′) = 3, β2,3(W

′) = 2 otherwise βq,m(W ′) = 0. Hence W ′ is also
a (good) homological shell of X. Thus, locally around V , the parameter space of the universal family of
homological shells of X coincides with the parameter space of the Hilbert scheme which parametrizes a
closed subscheme W ′ which includes X and has the Hilbert polynomial AW ′(m) = AV (m). To get the
first infinitesimal deformations of V as a homological shell of X is equivalent to get the first infinitesimal
embedded deformations of V with including X, which is calculated by H0(IX/V ⊗ NV/P ), where NV/P

denotes the normal sheaf of V in P . This shows that T = H0(IX/V ⊗NV/P ) (cf. also, [18]).
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To see the bundle structure of the normal sheaf NV/P , we set B = Pn, OB(HB) = OB(1), D = Pm,
OD(HD) = OD(1), a Segre embedding φ : U := B ×D = Pn × Pm → PN = P where N = nm+ n+m,
φ∗OP (1) = π∗

BOB(HB)⊗π∗
DOD(HD) = OU (HU ), projections πB : B×D → B, πD : B×D → D. Taking

a tensor product of pull backs of two Euler sequences, we have an exact commutative diagram as follows.

0 0 0y y y
0 −−−−→ π∗

BΩ
1
B ⊗ π∗

DΩ1
D −−−−→

n+1⊕
π∗
BOB(−HB)⊗ π∗

DΩ1
D −−−−→ π∗

DΩ1
D −−−−→ 0y y y

0 −−−−→
m+1⊕

π∗
BΩ

1
B ⊗ π∗

DOD(−HD) −−−−→
N+1⊕

OU (−HU )
β1−−−−→

m+1⊕
π∗
DOD(−HD) −−−−→ 0y yβ2

yα1

0 −−−−→ π∗
BΩ

1
B −−−−→

n+1⊕
π∗
BOB(−HB) −−−−→

α2

OU −−−−→ 0y y y
0 0 0

(#-3)

Putting ρ = α1 ◦ β1 = α2 ◦ β2, we see that Ker(ρ) ∼= φ∗Ω1
P = Ω1

P ⊗ OU and π∗
BΩ

1
B ⊗ π∗

DΩ1
D ⊆ Ker(ρ).

Then we apply Lemma 1.2 to the diagram (#-3) and get an short exact sequence :

0→ π∗
BΩ

1
B ⊗ π∗

DΩ1
D → Ω1

P ⊗OU → π∗
BΩ

1
B ⊕ π∗

DΩ1
D
∼= Ω1

U → 0,

which brings an isomorphism N∨
U/P
∼= π∗

BΩ
1
B⊗π∗

DΩ1
D. Hence, the normal sheaf satisfies NU/P

∼= π∗
BΘB⊗

π∗
DΘD. The isomorphism N∨

U/P
∼= π∗

BΩ
1
B ⊗ π∗

DΩ1
D can be described explicitly by using the homogeneous

coordinates [s0 : s1 : . . . : sn] of B = Pn, [t0 : t1 : . . . : tm] of D = Pm, and [Z0 : Z1 : . . . : ZN ] of
P = PN as follows. Through the Segre embedding φ, for the given indexes 0 ≤ α, j ≤ n, 0 ≤ β, k ≤ m,
and 0 ≤ p, q, r, i ≤ N , let assume that Zp = sα ⊗ tβ , Zq = sj ⊗ tβ , Zr = sα ⊗ tk, and Zi = sj ⊗ tk. Then
the homogeneous ideal IU is generated by the quadric equations of the form ZpZi−ZqZr. Hence, on the
affine set φ(U) ∩D+(Zi) of P , the bundle N∨

U/P has the local frame of the forms :

ν(p; q, r/i) = d

((
Zp

Zi

)
−
(
Zq

Zi

)(
Zr

Zi

))
.

Since φ(U)∩D+(Zi) ∼= D+(sj)×D+(tk), the bundle π∗
BΩ

1
B ⊗ π∗

DΩ1
D is free on the affine open D+(sj)×

D+(tk) with the frame of the forms :

ω(α/j;β/k) = d

(
sα
sj

)
⊗ d

(
tβ
tk

)
.

The isomorphism N∨
U/P
∼= π∗

BΩ
1
B ⊗ π∗

DΩ1
D gives the correspondence between the local section ν(p; q, r/i)

and the local section ω(α/j;β/k) on the affine open D+(sj)×D+(tk).
For later use, let us study incidentally the line bundle det(NU/P ) by applying the splitting principle.

For n-bundle E1 = π∗
BΘB , and m-bundle E2 = π∗

DΘD, taking Chern roots u1, . . . , un and v1, . . . , vm, we
have Σiui = c1(E1) = (n + 1)π∗

BHB and Σjvj = c1(E2) = (m + 1)π∗
DHD. Then c1(NU/P ) = ΣiΣj(ui +

vj) = m ·c1(E1)+n ·c1(E2), which implies that det(NU/P ) ∼= π∗
BOB(m(n+1)HB)⊗π∗

DOD(n(m+1)HD).
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Now let us go back to our case that n = 1 and m = 2, namely B = P1, D = P2, U = V = P1 × P2.
Since rank(Ω1

D) = 2 and ∧2Ω1
D
∼= OD(−3HD), we have that ΘD

∼= Ω1
D(3HD), and the normal sheaf

satisfies NV/P
∼= π∗

BOB(2HB) ⊗ π∗
DΩ1

D(3HD). Now, tensoring NV/P to the short exact sequence (#-1),
we obtain a short exact sequence :

0 −−−−→ ⊕2NV/P (−3H) −−−−→ ⊕3NV/P (−2H) −−−−→ IX/V ⊗NV/P −−−−→ 0, (#-4)

which induces an exact sequence :

⊕3H0(NV/P (−2H)) −−−−→ H0(IX/V ⊗NV/P ) −−−−→ ⊕2H1(NV/P (−3H)). (#-5)

Recalling the factOV (H) ∼= π∗
BOB(HB)⊗π∗

DOD(HD), let us calculateH0(NV/P (−2H)) andH1(NV/P (−3H))

by using Künneth formula (cf. Theorem1.5) and Bott formula (cf. [1]) on Hp(Pk,Ωq
Pk(m)).

H0(NV/P (−2H)) ∼= H0(V, π∗
DΩ1

D(HD)) ∼= H0(B,OB)⊗C H0(P2,Ω1
P2(1)) = 0

H1(NV/P (−3H)) ∼= H1(π∗
BOB(−HB)⊗ π∗

DΩ1
D)

∼= [H1(OB(−HB))⊗H0(Ω1
D)]⊕ [H0(OB(−HB))⊗H1(Ω1

D)] = 0

Apply these results to the exact sequence (#-5), we obtain H0(IX/V ⊗NV/P ) = 0. Now we summarize
our results into the following theorem.

Theorem 2.1 Let V be a Segre 3-fold, namely an image of a Segre embedding P1 × P2 → P5 = P . Take
a sufficiently general projective transformation σ ∈ PGL(6,C) such that the Segre 3-folds V and V σ meet
transversely (cf. Theorem 1.4). Then the intersection X = V ∩ V σ is a smooth projective curve, which
has the invariants : deg(X) = 9, g(X) = 4, ∆(X) = 4, and the Hilber polynomial AX(m) = 9m − 3.
The Segre 3-folds V and V σ are good homological shells of X and have the same graded Betti numbers :
β0,0 = 1, β1,2 = 3, β2,3 = 2 otherwise βq,m = 0.

Then the tangent space T at V or at V σ of the parameter space of the universal family of homological
shells of X is zero. In particular, the Segre 3-folds V and V σ correspond to isolated points in the parameter
space of the universal family of homological shells of X, and they are not weakly shell equivalent to each
other.
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