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Abstract

We continue to classify good homological shells of a canonical curve X with genus g = 6. Here we
consider the case that the canonical curve X is of plane quintic type. In this case, the classification
of the good homological shells is more complicated than in the generic case already handled in [23],
and is not completed yet. However, also in this case, we can verify the inequality on ∆-genera of
the good homological shells, which is predicted by our ∆-genus inequality conjecture in [14]. The
summary of this result is given by the maximal inclusion diagram (#-2).
Keywords: (good) homological shell, pregeometric shell, canonical curve, plane quintic, genus 6,
∆-genus inequality conjecture

§0 Introduction.

All the problems in [14] and in [19] arose from our faith that there must exist a geometry of projective
embeddings which reflects the internal geometry of projective varieties. As a main tool for exploring
into the geometry of projective embeddings, we have a special interest in intermediate ambient schemes
which satisfy certain good conditions from the view point of syzygies for the given embedded variety.
Those intermediate ambient schemes are called as homological shells (previously called as “pregeometric
shells”), whose precise definition is given in Definition 1.1.

Among the problems in [14] and [19], the most important and fundamental one is Conjecture (1.3)
including ∆-genus inequality conjecture (1.3.2). In our articles [15] - [17], and [20] - [23], through the
classification of homological shells of a given embedded projective variety, we found several examples
of homological shells, which also give evidences for this conjectures and bring a new conjecture (cf.
Conjecture 1.8 in [23]). Moreover, some of these examples brought us homological shells of a new type
except the typical shells, namely original models of homological shells which motivated our research.

On the other hand, we found that the arithmetic Cohen-Macaulay property or equidimensionality is
not inherited from the homological cores to their homological shells in general. In the classification of
homological shells of a canonical curve with g = 6, to avoid technical nuisances caused by this defect of the
homological shells, we restrict ourselves to study “good” homological shells (cf. (1.1.2)) only. Obviously,
good homological shells always inherit the arithmetic Cohen-Macaulay property from their homological
cores. As a remark, an advantage of the concept “good homological shell” comes from the fact that all
the typical shells are always good homological shells but not arithmetically Cohen-Macaulay in general
when the homological cores are not arithmetically Cohen-Macaulay.
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This article is an additional part of the series of our papers mentioned above. Here, we take a
canonical curve of plane quintic type with genus g = 6 as the embedded projective variety and study its
good homological shells. For these good homological shells, we can confirm monotonously ∆-decreasing,
namely ∆-genus inequality conjecture (1.3.2) holding among them. We summarize this result by drawing
a maximal inclusion diagram as in (#-2).

It should be noticed that a maximal inclusion diagram guarantees the non-existence of an inclusion by
a vacant space without an arrow. In other words, an arrow in a maximal inclusion diagram shows only the
possibility of the existence of an inclusion. Since the homological shells move in their families, we often
have to put up with drawing a maximal inclusion diagram instead of a diagram which describes inclusions
precisely. Moreover, maximal inclusion diagrams are very useful to confirm monotonously ∆-decreasing
quickly.

In this article, we use successively the notation and conventions in [5], [20], and [23] without mention.

§1 Preliminaries.

Let us recall our key concept for studying the geometric structures of projective embeddings. The concept
“homological shell” was introduced first in [13]. We can find many good actual examples of this concept
in a number of classical works in Complex Projective Geometry such as [8], [9], [11], [3] and so on.

Definition 1.1 (shells and cores) Take a polynomial ring S := C[Z0, . . . ZN ] of (N + 1)-variables
over the complex number field C with the usual grading, and its maximal homogeneous ideal S+ :=
(Z0, . . . ZN )S. Let V and W be closed subschemes of P = PN (C) = Proj(S) which satisfy V ⊆ W
(namely the inclusion of the defining ideal sheaves: IV ⊇ IW in the structure sheaf OP of P ; In this case,
the subscheme W is called simply an intermediate ambient scheme of V ).

(1.1.1) If the natural map:

µq : TorSq (RW , S/S+)→ TorSq (RV , S/S+)

is injective for every integer q ≥ 0 (abbr. “global Tor injectivity condition”), we say that W is
a homological shell (abbr. H-shell) of V and that V is a homological core (abbr. H-core) of W ,
where RW := S/IW and RV := S/IV denote the homogeneous coordinate rings of W and of V ,
respectively, and IW := ⊕mH0(P, IW (m)), IV := ⊕mH0(P, IV (m)).

(1.1.2) Now we set r0 := dim(W )−dim(V ). Assume that the scheme W is a homological shell of V and
that for every integer q ≥ 0, we have TorSq−r0(RW , S/S+) = 0 if TorSq (RV , S/S+) = 0. Then we
say that the scheme W is a good homological shell of V and the scheme V is a good homological
core of W .

For the subscheme V , the total space P and V itself are called as trivial (good) homological shells.

Remark 1.2 (i) Homological shell defined in (1.1.1) above was called as pregeometric shell or PG-shell
in our several previous works after we introduced this concept in [13].

(ii) The condition “good” in (1.1.2) is the same to say the inequality on the homological dimen-
sions hdS(RW ) ≤ hdS(RV ) − r0, or equivalently arith.depth(W ) ≥ arith.depth(V ) + r0 by Auslander-
Buchsbaum formula. Thus, supposing that the scheme V is arithmetically Cohen-Macaulay and that the
scheme W is a homological shell of V , it is obvious that the scheme W is arithmetically Cohen-Macaulay
if and only if the homological shell W is good.
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(iii) Homological shell is not always good. For example, see the example given by Remark (1.4) in
[22]. This example also shows that a closed subscheme which has an arithmetically Cohen-Macaulay
homological core is not always arithmetically Cohen-Macaulay nor equidimensional.

Let us recall our two fundamental conjectures on homological shells from [14] and [15].

Conjecture 1.3 Let P = PN (C) be an N-th projective space with the tautological ample line bundle
OP (1) = OP (H) and V ⊆W ⊆ P its closed subschemes.

(1.3.1) Assume that the scheme V is a variety, namely reduced and irreducible and that the closed
subscheme W is a homological shell of V . Then the subscheme W is also a variety.

(1.3.2) [∆-genus inequality conjecture] Suppose that the subscheme V is arithmetically D2, namely
its arithmetic depth ≥ 2. If W is a homological shell of V , then the inequality:

∆(V,OV (1)) ≥ ∆(W,OW (1))

holds on their ∆-genera.

Remark 1.4 For a polarized scheme (V, L), namely a pair of a projective scheme V and an ample
invertible sheaf L on it, its ∆-genus is defined by ∆(V, L) := dim(V ) + deg(L)− h0(V, L), where deg(L)
is defined by using its Hilbert polynomial. On the general theory of ∆-genus for a polarized variety (V, L),
see [3]. In our previous papers, we assumed that both the schemes V and W are varieties in the conjecture
(1.3.2) since ∆-genus is usually defined for a pair of a variety and an ample line bundle on it. However,
it is convenient to generalize the statement of the conjecture (1.3.2) for closed schemes from the technical
view point since the two conjectures can be handled independently. For additional information on these
two conjectures, see §1 of [17].

Remark 1.5 In the conjecture (1.3.2), the assumption of arithmetic D2-condition is essential. Without
this assumption, we can make a counter-example as follows. First we take an arithmetically non-Cohen-
Macaulay smooth rational quartic curve, namely

V = P1 ∋ [s0 : s1] 7−→ [Z0 : Z1 : Z2 : Z3] = [s40 : s30s1 : s0s
3
1 : s41] ∈ P3.

Then, the homogeneous ideal IV has a system of minimal generators : {Z0Z3 − Z1Z2, Z
3
1 − Z2

0Z2, Z
3
2 −

Z1Z
2
3 Z0Z

2
2 −Z2

1Z3}. Let us set W := {Z3
1 −Z2

0Z2 = 0}. Obviously the cubic surface W is a homological
shell of the curve V . On the other hand, ∆(W,OW (1)) = 1 > 0 = ∆(V,OV (1)) since (V,OV (1)) ∼=
(P1, OP1(4)).

Remark 1.6 For a polarized variety (V, L), then ∆(V, L) ≥ 0 by (4.2) Theorem of [3]. However, for
a polarized scheme (V, L), it may happen that ∆(V,L) < 0. To make an example, let us take a large
enough integer N , 2-plane H ⊆ PN = P , a conic Q ⊆ H, distinct closed n-points pi ∈ PN (i = 1, 2, . . . n)
in general position with respect to the 2-plane H, and set a closed scheme V := Q ∪ (

∪n
i=1{pi}) and an

ample invertible sheaf L := OP (1)|V . Then ∆(V,L) = −n < 0. Even if we demand the connectedness of
the scheme V , taking a 3-plane H, a quadric surface Q ⊆ H, a closed point p0 ∈ Q, and distinct closed
n-points pi ∈ PN (i = 1, 2, . . . n) in general position with respect to the 3-plane H, it is enough to set
V := Q ∪ (

∪n
i=1 ℓ(pi, p0)), where ℓ(pi, p0) denotes the line joining the points pi and p0.
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Remark 1.7 In case of polarized varieties with low ∆-genera, there is an explicit classification theory
such as [3]. However, it is desperate to classify polarized schemes with low ∆-genera. In fact, for a given
closed subvariety X ⊆ PN , adding enough many closed points or lines, we can make a polarized scheme
with low ∆-genus freely. Contrary to the facts above, if we once fix a closed subvariety V ⊆ PN with low
∆-genus, it is nearly practical in our experience to classify the homological shells of V .

Remark 1.8 (monotonously ∆-decreasing) Let P and V ⊆ P be the same as in the Conjecture (1.3)
above and assume that the scheme V is arithmetically D2. Suppose we have two homological shells W
and Z of V with W ⊆ Z. Then, obviously the scheme Z is a homological shell of W and the scheme W
is arithmetically D2. If the conjecture (1.3.2) is true, then we have ∆(W.OW (1)) ≥ ∆(Z,OZ(1)). This
phenomenon is called as monotonously ∆-decreasing on the homological shells of V . To find evidence for
the conjecture (1.3.2) through the classification of homological shells of a canonical curve, we have only
to check the inequality on ∆-genera among its homological shells with inclusion relation.

Definition 1.9 (maximal inclusion diagram) Once an embedding of a projective variety X ⊆ PN =
P is given, we draw a diagram what we call a maximal inclusion diagram in the following rule in which
we put X at the top and P at the bottom. As the rule, if there are two homological shells W and W ′ of
X and there is a possibility of the existence of an inclusion W ⊆ W ′ from the view point of graded Betti
numbers, putting W at the up side and W ′ at the down side, we draw down an arrow W −→ W ′ in the
diagram. To explain more precisely, let us denote the i-th Betti number in degree j of W and of W ′ by
βi,j and by β′

i,j, respectively. In other word, βi,j = dimC TorSi (RW , S/S+)(j) and so on. Now we assume
that there is an inclusion W ⊆W ′. Then, automatically, the scheme W ′ is a homological shell of W and
therefore βi,j ≥ β′

i,j for all i and j. Thus, by comparing the graded Betti numbers, namely if for all i and
j, βi,j ≥ β′

i,j hold, then we draw an arrow : W →W ′ in the diagram.

Remark 1.10 We have changed the name of the diagram as “maximal inclusion diagram” from “maxi-
mum inclusion diagram” in our previous paper [23]. Here we use the word “maximal” to show the set of
inclusions is maximal, namely some of arrows for inclusions might be missing in the real circumstances.

However, for simplicity, we omit to draw arrows for compositions of inclusions. For example, when
we draw W1 → W2 → W3 in the maximal inclusion diagram, if their composed inclusion exists, then it
may happen one of the 4 diagrams below in the real.

W1

W2

W3

@
@R

?
�

�	

W1

W2

W3

?
�

�	

W1

W2

W3

@
@R

?

W1

W2

W3

?

Example 1.11 To get used to a maximal inclusion diagram, let us review our classification on the good
homological shells of a canonical curve X ⊆ P5 = P which is of g = 6 and of generic case (non-trigonal
and non-plane-quintic) handled in our previous paper [23]. The diagram is almost the same as the one
in the last page of [23] except adding the term (Q′,∆) with duplication and confirming that the scheme
Y is a variety. To see that the arithmetically Cohen-Macaulay scheme Y of dimension 2 is a variety, we
compare the curve X and the scheme Y . The numbers a1(X) and a1(Y ), namely the number of quadric
equations of X and that of Y , respectively have a relation : a1(X) = a1(Y ) + 1. The curve X and the
scheme Y have no equation in degree ≥ 3 (as the members of minimal generators of their homogeneous
ideals). This means that there is a quadric hypersurface Q′ which satisfies X = Y ∩ Q′ and Y ̸⊆ Q′.
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Then the quadric equation of Q′ is a non-zero divisor for the homogeneous coordinate ring RY , otherwise
the hypersurface Q′ goes through an associated point of the scheme Y and dim(Y ∩ Q′) = 2. Since the
ring RY is arithmetically Cohen-Macaulay and the ring RX is a domain, we see that the ring RY is also
a domain which implies that the scheme Y is also a variety. The maximal inclusion diagram of the good
homological shells of X is given as follows. Each mark on the right shoulder of each term has a meaning
: ∗=“classification accomplished”, v=“confirmed to be a variety”, e=“an example exists”, respectively.
Moreover, (e1, e2, e3) = (2, 1, 0) or (1, 1, 1).

(X = Y ∩Q′,∆ = 5)[∗,v]

(Z,∆ = 2)[e] (Y,∆ = 1)[v,e]

(Q ∩Q′,∆ = 1)[∗,v] (S(e1, e2, e3),∆ = 0)[∗,v]

(Q′,∆ = 0)[∗,v] (Q,∆ = 0)[∗,v]

(P,∆ = 0)[∗,v].

HHHHHHHj?

?

HHHHHHHj ?

?

HHHHHHHj ?

HHHHHHHj ?

(#-1)

Problem 1.12 From the diagram (#-1), a problem comes into our mind. For a projective subvariety Y ⊆
PN = P , we set the family of (good) homological shells of Y : HSF (Y ) := {(good) homological shell of Y } ⊆
P(P ), where P(P ) denotes the power set of P . Let us assume that a projective subvariety X ⊆ PN = P
is represented as the transverse intersection of a projective subvariety V ⊆ P with a hypersurface D ⊆ P ,
then does the following equality hold as the subsets of P(P )?

HSF (X)
?
= HSF (V ) ∪ {W ∩D | W ∈ HSF (V )}

Remark 1.13 In the sequel, we often apply the argument of taking a main (irreducible) component
W0 of an arithmetically Cohen-Macaulay scheme W ⊆ PN . Here we should make a remark that the
component W0 is not arithmetically Cohen-Macaulay nor linearly normal in general. Let us use again
the example of Remark 1.5. Take a cubic homogeneous polynomial F := (Z3

1 − Z2
0Z2) + (Z3

2 − Z1Z
2
3 )

and set W := {Z0Z3 − Z1Z2 = F = 0} to be a (2, 3)-complete intersection. Then the scheme W ⊆ P3

is arithmetically Cohen-Macaulay and has an irreducible decomposition X ∪ ℓ1 ∪ ℓ2, where X denotes the
rational quartic curve in Remark 1.5 and ℓi does a line. If we take a main (irreducible) component X as
W0, then W0 is not linearly normal, and therefore is not arithmetically Cohen-Macaulay.
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§2 Main Results.

Let us summarize our results in this article.

In the Petri’s Analysis (cf. [8], [9]), there are 3 classes in the canonical curves of genus 6 : (i) plane
quintic case ; (ii) trigonal case ; (iii) generic case (non-trigonal and non-plane-quintic). Our previous
paper [23] handled the cases (iii) only. Now we study the case (i) in this article.

From the view point of Remark 1.8, we classify roughly homological shells of the canonical curve in
this case and check their ∆-genera. Next theorem gives an evidence for the conjecture (1.3.2).

Theorem 2.1 Let X ⊆ P5(C) = P be a canonical curve with g = 6 and of plane quintic type. Then,
monotonously ∆-decreasing on good homological shells of X holds. Namely, take any two good homolog-
ical shells Y and Z of the curve X with Y ⊆ Z. Then we always have :

∆(Y,OY (1)) ≥ ∆(Z,OZ(1))

.

Our rough classification on homological shells of a canonical curve of genus 6 and of plane quintic
type is given as follows. We should make a remark that our classification on 2-dimensional homological
shells is not finished yet, which is excluded here and will be handled in a forthcoming paper.

Theorem 2.2 Let X ⊆ P5(C) = P be a canonical curve with g = 6 and of plane quintic type, and a
scheme W be a homological shell of X.

(2.2.1) If dimW ̸= 3, then the homological shell is good and arithmetically Cohen-Macaulay.

(2.2.2) If dimW ̸= 2, the good homological shell W is irreducible and reduced.

(2.2.3) If dimW = 1, then W = X.

(2.2.4) If dimW = 2, then ∆(W,OW (1)) = 0, 2, 3. If moreover ∆(W,OW (1)) = 0, then it coin-
cides with the Veronese surface (P2, OP2(2)) defined by all the quadric equations of the curve X,
which is simply denoted by Ve in the maximal inclusion diagram below. The data for W with
∆(W,OW (1)) = 2, 3 are described in Table 1.

(2.2.5) If dimW = 3 and the homological shell W is good, then ∆(W,OW (1)) = 0, 2. If moreover
∆(W,OW (1)) = 0, it coincides with the the rational scroll S(2, 1, 0), which is also a cone of F1.

(2.2.6) If dimW = 4, then W is a quadric hypersurface Q or a cubic hypersurface D which is a member
of minimal generators of the homogeneous ideal IX of the curve X.

The data for homological shells remaining unknown are listed in Table 1, where a1 and b1 denote the
number of equations in degree 2 and 3, respectively.

shells dim a1 b1 Hilbert Poly. ∆
Wa 3 1 2 5A3 − 6A2 + 2A1 + 0A0 2
Wb 2 4 ? 6A2 − 7A1 + 2A0 2
Wc 2 3 ? 7A2 − 9A1 + 3A0 3

Table 1: The data of homological shells
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The maximal inclusion diagram is given as follows. The symbol on the right shoulder of each term denotes
∗=“classification accomplished”, v=“confirmed to be a variety”, e=“an example exists”, respectively.

(X,∆ = 5)[∗,v]

(Wc,∆ = 3)[e] (Wb,∆ = 2) (Ve,∆ = 0)[∗,v]

(Wa,∆ = 2)[v] (S(2, 1, 0),∆ = 0)[∗,v]

(D,∆ = 1)[∗,v] (Q,∆ = 0)[∗,v]

(P,∆ = 0)[∗,v].

�������

HHHHHHj?

XXXXXXXXXXXXz?

HHHHHHj

������� ?

?

XXXXXXXXXXXXz ?

XXXXXXXXXXXXz ?

(#-2)

§3 Proof of the Results.

For a canonical curve X ⊆ P5(C) = P of genus g = 6 and of plane quintic type, an outline of the method
of studying its homological shells is similar to that in [23]. However, the number of cases to be considered
for this case is far larger than that for the generic case.

Let us start from studying graded Betti numbers of the homological shells of the curve X. As usual,
we set S = C[Z0, · · · , Z5], S+ = (Z0, · · · , Z5)S, and W to be a good homological shell of X. By Remark
1.2 (ii), the scheme W is also arithmetically Cohen-Macaulay.

As is well-known(cf. [10], [11]), the minimal graded S-free resolution FX,• of the homogeneous coor-
dinate ring RX is known to be :

0 ←−−−− RX ←−−−− S ←−−−− S(−2)6 ⊕ S(−3)3 ←−−−− S(−3)8 ⊕ S(−4)8

←−−−− S(−4)3 ⊕ S(−5)6 ←−−−− S(−7)1 ←−−−− 0.

(#-3)

From the conditions of homological shells, each term of the minimal S-free resolution of the homogeneous
coordinate ring RW is a direct factor of the corresponding term in the resolution for RX . Thus we have
a minimal graded S-free resolution FW,• :
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0 ←−−−− RW ←−−−− S ←−−−− S(−2)a1 ⊕ S(−3)b1 ←−−−− S(−3)a2 ⊕ S(−4)b2

←−−−− S(−4)a3 ⊕ S(−5)b3 ←−−−− S(−7)b4 ←−−−− 0.

(#-4)

Of course, we have 0 ≤ a1 ≤ 6, 0 ≤ b1 ≤ 3, 0 ≤ a2 ≤ 8, 0 ≤ b2 ≤ 8, 0 ≤ a3 ≤ 3, 0 ≤ b3 ≤ 6, and
0 ≤ b4 ≤ 1 as the graded Betti numbers (cf. a1 = β1,2, b2 = β2,4 etc., where βi,j stands for the i-th Betti
number in degree j). Now we consider the Hilbert polynomial AW (m) of the scheme W :

AW (m) =

5∑
k=0

pk(W )Ak(m) Ak(x) :=

(
x+ k
k

)
.

By applying Lemma 2.6 in [15], we can write down the Hilbert polynomial AW (m) ofW which is described
by these graded Betti numbers.

p5 = p5(W ) = 1− a1 − b1 + a2 + b2 − a3 − b3 + b4
p4 = p4(W ) = 2a1 + 3b1 − 3a2 − 4b2 + 4a3 + 5b3 − 7b4
p3 = p3(W ) = −a1 − 3b1 + 3a2 + 6b2 − 6a3 − 10b3 + 21b4
p2 = p2(W ) = +b1 − a2 − 4b2 + 4a3 + 10b3 − 35b4
p1 = p1(W ) = b2 − a3 − 5b3 + 35b4
p0 = p0(W ) = b3 − 21b4

Now we set w = dimW , d = degW , and ∆ = ∆(W,OW (1)). Then w = 1, 2, . . . , 5.

• Assume that w = 1. Then p5 = p4 = p3 = p2 = 0 and p1 > 0. Then we see that d = p1 = 10 and
hdS(RW ) ≤ hdS(RX), which implies arith.depth(RW ) ≥ arith.depth(RW ) = 2, namely the scheme W is
arithmetically Cohen-Macaulay. Applying Lemma 3.6 in [20], we get W = X and ∆ = 5.

• Suppose that w = 5, 4. If w = 5, obviously W = P . If w = 4, then a1 + b1 ≥ 1. Since the curve
X is irreducible and reduced, all the minimal generators of IX is irreducible, which implies a1 + b1 = 1,
namely the scheme W is a divisor of P . By the classical works [8] or [9], we see that the scheme W is a
hypersurface of d = 2 or d = 3.

• Let us consider the case w = 3, namely p5 = p4 = 0 and p3 > 0, which implies d = p3.
Then we have 75 cases of (a1, b1, a2, b2, a3, b3, b4, d). For example, we have a case : (a1, b1, a2, b2, a3, b3, b4, d) =

(3, 1, 1, 5, 1, 2, 0, 1). It might happen that the scheme W is a scheme theoretic union of 3-plane and a
scheme of dim ≤ 2 which includes the canonical curve X. It is not so easy to exclude this case by ana-
lyzing its scheme structure and syzygies. Thus we assume that the homological shell W is good, namely
a3 = b3 = b4 = 0.

By Remark 1.2 (ii), the scheme W is arithmetically Cohen-Macaulay, which implies the surjectivity
of the natural map H0(P,OP (1)) → H0(W,OW (1)). On the other hand, since X ⊆ W , the scheme W
is also linearly non-degenerate, and therefore H0(P,OP (1)) ∼= H0(W,OW (1)), namely h0(W,OW (1)) = 6
and ∆ = d+ 3− 6 = d− 3.

Hence, 10 cases of (a1, b1, a2, b2) remain as in the following table.
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Case No. (a1, b1, a2, b2) d ∆ Existence
(1) (1, 2, 0, 2) 5 2 ?
(2) (1, 3, 1, 2) 5 2 No
(3) (2, 0, 0, 1) 4 1 No
(4) (2, 1, 1, 1) 4 1 No
(5) (2, 2, 2, 1) 4 1 No
(6) (2, 3, 3, 1) 4 1 No
(7) (3, 0, 2, 0) 3 0 Yes
(8) (3, 1, 3, 0) 3 0 No
(9) (3, 2, 4, 0) 3 0 No
(10) (3, 3, 5, 0) 3 0 No

Table 2: The graded Betti Numbers, the degree and ∆

Depending on d = 3, 4, 5, let us consider these 10 cases.

•• Now we assume d = 3. Take a main component W0 including the curve X. If the scheme W is
reducible or non-reduced, then the scheme (W0)red with the reduced structure has deg((W0)red) ≤ 2,
which implies the scheme (W0)red is linearly degenerate. It contradicts the fact X ⊆ (W0)red. Hence
we see that the scheme W is a variety. Then the variety W is a variety of minimal degree and whose
homogeneous coordinate ring RW has a 2-linear resolution, which excludes the 3 cases (8)-(10). Only
the case (7) remains. Take the quadric hull of the curve X, namely the Veronese surface Ve as in [8] or
[9] since we assume that the curve X is of plane quintic type. The variety W is defined by 3 quadric
equations of X, we see that X ⊆ Ve ⊆ W . Hence the variety W is a homological shell of Ve. Applying
the result of [16], we see that W ∼= S(2, 1, 0) = P(O(2, 1, 0)), namely the one point codal variety of Ve

or equivalently the cone of the image of inner projection of Ve which is the same as the cone of the one
point blow up F1 of P2. Then the existence of this case is obvious.

•• Next we consider the case d = 4. By Table 2, we see that a1 = 2. Let us take two linearly independent
quadric equations f1, f2 of W . Both the two equations f1 and f2 are irreducible because they form a
part of minimal generators of the homogeneous prime ideal IX . Set the scheme W ∗ to be the (2, 2)-
complete intersection defined by f1 = f2 = 0. Then X ⊆ W ⊆ W ∗. These two scheme W and W ∗ are
arithmetically Cohen-Macaulay , of dimension 3 and degW = degW ∗ = 4, which implies W = W ∗ by
Lemma 3.6 of [20]. Then the 3 cases (4)-(6) are excluded and only the case (3) remains. Now, by the
similar argument in the case d = 3 above, we see that X ⊆ Ve ⊆ W where Ve denotes the Veronese
surface defined by the quadric hull of the curve X. Then, it implies that the scheme W is a homological
shell of Ve. Hence we have an injective map C ∼= TorS2 (RW , S/S+)(4) → TorS2 (RV e, S/S+)(4) = 0, which
is a contradiction.

•• Let us consider the remaining case d = 5, which means the case (1) or (2). First we study the case
(2). Take a minimal graded S-free resolution of RW :

0 ←−−−− RW ←−−−− S
φ1←−−−− S(−2)1 ⊕ S(−3)3 φ2←−−−− S(−3)1 ⊕ S(−4)2 ←−−−− 0.

By the minimality of the resolution, the map φ1 on the component S(−2)1 is represented by a non-zero
homogeneous quadric equation Q, and the map φ2 on the component S(−3)1 is represented by a non-zero
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vector [L, 0, 0, 0] where L denpotes a linear homogeneous polynomial. Then, the fact φ1 ◦φ2 = 0 implies
Q ·L = 0, which is a contradiction. Hence the case (2) in Table 2 is excluded. Thus we consider the case
(1) only in the sequel.

Take a main component W0 including the curve X and set the scheme (W0)red to be the reduced
scheme. By the similar argument in the case d = 3, the scheme (W0)red is linearly non-degenerate,
which means deg(W0)red ≥ 3. Let η be the generic point of the scheme W0 and set s := lengthOW0,η.
Since (W0)red ⊆ W0 ⊆ W , by using Lemma 3.7 in [20], we see that 3 ≤ 3 · s ≤ 5, which shows s = 1,
namely (W0)red = W0, or equivalently the scheme W0 is reduced and a variety. Set d0 := degW0, then
d0 = 3, 4, 5.

Now we suppose d0 = 3. Then the variety W0 is of minimal degree and has 2-linear resolution. Hence
TorS2 (RW0 , S/S+)(4) = 0. By the inclusions X ⊆ W0 ⊆ W , the scheme W is also a homological shell
of W0, which induces an injection TorS2 (RW , S/S+)(4) → TorS2 (RW0 , S/S+)(4). This is absurd because
TorS2 (RW , S/S+)(4) ∼= C2 which is brought by b2 = 2 in the cases (1) of Table 2.

Next we consider the case d0 = 4. The inclusion X ⊆ W0 shows h0(W0, OW0(1)) ≥ 6. By using the
Fujita’s inequality on ∆-genus (cf. (4.2)Theorem in [3]), we have

0 ≤ ∆(W0, OW0(1)) = 4 + 3− h0(W0, OW0(1)) ≤ 7− 6 = 1,

which implies h0(W0, OW0(1)) = 6, 7. Let us suppose h0(W0, OW0(1)) = 6, namely the variety W0

is linearly normal. Then, by [12], the scheme W0 is a (2, 2) complete intersection, which implies
TorS1 (RW0 , S/S+)(3) = 0. From the inclusions X ⊆ W0 ⊆ W , the scheme W is a homological shell
of W0, which shows that TorS1 (RW , S/S+)(3) = 0 and b1 = 0. By comparing with the case (1) in Table
2, we see that this is absurd. Now we study the case h0(W0, OW0(1)) = 7. Then, there exist a lin-

early non-degenerate variety W̃0 ⊆ P6 = P̃ of dimension 3, a curve X̃ ⊆ W̃0, and a linear projection
π : P̃ = P6 · · · → P5 = P which sends isomorphically the variety W̃0 and the curve X̃ to the variety
W0 and to the curve X, respectively. Since π∗OW0(1)

∼= O
W̃0

(1), deg W̃0 = 4, h0(W̃0, OW̃0
(1)) = 7,

∆(W̃0, OW̃0
(1)) = 0, the variety W̃0 is arithmetically Cohen-Macaulay. Similarly, π∗OX(1) ∼= O

X̃
(1) and

h0(X̃, O
X̃
(1)) = h0(X,OX(1)) = h0(X,ωX) = 6. Hence the curve X̃ is linearly degenerate in P̃ , namely

there is a 5-plane H̃ ⊆ P̃ which contains the curve X̃. This brings the inclusions X̃ ⊆ W̃0∩ H̃ ⊆ H̃ ∼= P5.
The scheme Ṽ := W̃0 ∩ H̃ is arithmetically Cohen-Macaulay of dimension 2 with degree 4. If the scheme
Ṽ is reducible or non-reduced, by taking a main component including the curve X̃ of Ṽ , the similar
argument above gives a contradiction. Now we see that the surface Ṽ is of minimal degree and defined by
quadric equations. Recalling the fact that the embedding X̃ ⊆ H̃ ∼= P5 is the canonical embedding, we see
that the surface Ṽ is a Veronese surface defined by all the quadric equations of X̃ in H̃ ∼= P5. Because the
curve X ⊆ P is linearly non-degenerate, the linear projection sends the 5-plane H̃ isomorphically to the
5-th projective space P . This shows that the linear projection π sends the Veronese surface Ṽ isomorphi-
cally to its image π(Ṽ ). Namely, the inclusions X̃ ⊆ Ṽ ⊆ W̃0 are sent to the inclusions X ⊆ π(Ṽ ) ⊆W0

isomorphically by the linear projections π, respectively. By the reason that the surface π(Ṽ ) is also a

Veronese surface, we get π(Ṽ ) = Ve, which implies the inclusions X ⊆ Ve ⊆ W0 ⊆ W . Hence we get
the scheme W is a homological shell of the Veronese surface Ve. Since TorS1 (RV e, S/S+)(3) = 0, we see
b1 = 0, which contradicts the case (1) in Table 2.

Thus we show that d0 = 5, namely the scheme W is an arithmetically Cohen-Macaulay variety of
dimension 3 with d = 5. From the graded Betti numbers of the case (1) in Table 2, we obtain that
p3 = d = 5, p2 = −6, p1 = 2, p0 = 0, which implies the sectional genus g(W,OW (1)) = 2.

Once we obtain a linearly non-degenerate arithmetically Cohen-Macaulay variety of dimension 3 with
degree 5 and the sectional genus g(W,OW (1)) = 2 in P5, we can calculate conversely the graded Betti
numbers and confirm that they coincides with the ones in the case (1) of Table 2. The strategy of
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calculating the graded Betti numbers is the same as the one in the proof of Theorem 2.4 in [21]. In fact,
by cutting the variety W with generic 3-plane L, we obtain an arithmetically Cohen-Macaulay integral
scheme Y of dimension 1 in L ∼= P3, which has the arithmetic genus pa(Y ) = 2. Then, using Hilbert
polynomial of Y , we can recover this minimal graded SL-free resolution of the ring RY , where SL denotes
the polynomial ring of L ∼= P3. Thus we obtain the graded Betti numbers of W as in the case (1).

However, at this stage, we can not show the existence of the homological shell W of this type yet.

• Now we assume w = 2, namely p5 = p4 = p3 = 0 and p2 > 0, which implies d = p2. Without assuming
goodness of the homological shell, calculation of the graded Betti numbers under the assumption above
shows that we have 42 cases of (a1, b1, a2, b2, a3, b3, b4), where any case satisfies b4 = 0. Namely the
homological shell becomes automatically good, and therefore arithmetically Cohen-Macaulay. Since the
scheme W is linearly non-degenerate and arithmetically Cohen-Macaulay, we get h0(W,OW (1)) = 6.
From the calculation of the graded Betti numbers, we see that d = 4, 5, 6, 7 and ∆ = 0, 1, 2, 3, respectively.

•• If d = 4, then a1 = 6, which means that the scheme W is defined all the quadric equations of the
curve X since dimTorS1 (RX , S/S+)(2) = 6. This shows that the scheme W coincides with the Veronese
surface Ve. As we already showed in [16], [18], and [22], any homological shell of the variety of ∆ = 0
is also a variety of ∆ = 0. Hence, the Veronese surface is not contained by any homological shell of the
curve X with dimension 3 and ∆ = 2.

•• Let us study roughly the case d = 5, 6, 7. We have already showed that for w = 3, ∆ = 0, 2. Hence, to
show the monotonously ∆-decreasing, for w = 2, we have only to exclude the case ∆ = 1, namely d = 5.
Thus, the following lemma is a key for our proof.

Key Lemma 3.1 Let X ⊆ P5(C) = P be a canonical curve with g = 6 and of plane quintic type. Assume
that W ⊆ P is a homological shell of X and dimW = 2. Then, d = degW ̸= 5.

Proof. With the additional assumption d = 5, calculation of the graded Betti numbers under the as-
sumption : p5 = p4 = p3 = 0 brings that we have 16 cases of (a1, b1, a2, b2, a3, b3, b4), where any case
satisfies a1 = 5.

Let us take a main component W0 of W which contains the curve X. Then we have that X ⊆
(W0)red ⊆W0 ⊆W and the variety (W0)red is linearly non-degenerate. This shows that 5 ≥ deg(W0)red ≥
4. As in the argument above, by considering the length of the local ring of W0 at its generic point, we
see that W0 = (W0)red.

If degW0 = 4, then the surface W0 is a variety of minimal degree and defined by quadric equations of
the curve X. Then Ve ⊆ W0, where Ve denotes the Veronese surface including the curve X. Comparing
their dimensions, we get Ve = W0. Namely X ⊆ Ve ⊆ W , which implies that the scheme W is also a
homological shell of Ve.

Applying the result of [16], [18], and [22], we see that the scheme W is a variety of ∆ = 0, which
contradicts the assumption : d = 5, namely ∆ = 1.

Thus we have degW0 = 5, namely W = W0. In other word, the scheme W is an arithmetically
Cohen-Macaulay variety of d = 5. By using a1 = 5 and dimTorS1 (RX , S/S+)(2) = 6, we can find a
quadric hypersurface Q defined by a homogeneous polynomial f of degree 2 which satisfies X ⊆ Q and
W ̸⊆ Q. Then the scheme W ∩ Q is arithmetically Cohen-Macaulay, contains the curve X, and has
deg(W ∩Q) = 5 · 2 = 10 = degX. Hence we have X = W ∩Q, which induces an exact sequence:

0 ←−−−− RX ←−−−− RW
f←−−−− RW (−2) ←−−−− 0.
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Applying the minimal graded S-free resolution FW• in (#-4) to RW and RW (−2), respectively in the
sequence above, we obtain a double complex whose total complex gives a minimal grade S-free resolution
of RX :

S(−2)1 ←−−−− S(−4)5 ⊕ S(−5)b1 ←−−−− S(−5)a2 ⊕ S(−6)b2 ←−−−− S(−6)a3 ⊕ S(−7)b3 ←−−−−

f

y f

y f

y f

y
S ←−−−− S(−2)5 ⊕ S(−3)b1 ←−−−− S(−3)a2 ⊕ S(−4)b2 ←−−−− S(−4)a3 ⊕ S(−5)b3 ←−−−− .

(#-5)

Recalling the fact that the minimal graded S-free resolutions are unique up to isomorphisms as complexes,
let us compare FX,• in (#-3) with the total complex of (#-5). First we check the term FX,1, which shows
S(−2)1 ⊕ (S(−2)5 ⊕ S(−3)b1) ∼= S(−2)6 ⊕ S(−3)3 and implies b1 = 3. Next we see the term FX,2,
which shows (S(−3)a2 ⊕ S(−4)b2)⊕ (S(−4)5 ⊕ S(−5)b1) ∼= S(−3)8 ⊕ S(−4)8 and gives b1 = 0. This is a
contradiction.
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[8] K. Petri : Über die invariante Darstellung algebraischer Funktionen einer Variablen, Math. Ann. 88,
pp. 243-289 (1923).

[9] B. Saint-Donat : On Petri’s analysis of the linear system of quadrics through a canonical curve,
Math. Ann. 206 pp. 157-175 (1973).

[10] F. O. Schreyer : Syzygies of curves with special pencils, Thesis, Brandeis Univ. (1983).

[11] F. O. Schreyer : Syzygies of canonical curves and special linear series, Math. Ann. 275, pp. 105-137
(1986).

12

Reports of Graduate School of Meterial Science and Graduate School of Life Science,University of Hyogo No.24(2013) 



[12] H. P. F. Swinnerton-Dyer : An enumeration of all varieties of degree 4, Amer. J. Math. 95, pp.
403-418 (1973).

[13] T. Usa : An example of filtrations on syzygies induced by meta-Lefschetz operators, Report Sci. H.
I. T., No.8, pp. 12-25 (1997).

[14] T. Usa : Problems on geometric structures of projective embeddings, Report Sci. H. I. T. , No.9,
pp. 12-29 (1998) (Improved version : Duke E-print math.AG/0001004).

[15] T. Usa : A Classification of Pregeometric Shells of a Rational Quartic Curve, Report Sci. H. I. T. ,
No.13, pp. 1-17 (2002).

[16] T. Usa : Pregeometric Shells of a Veronese surface, Report Sci. H. I. T., No.14, pp.1-15 (2003).

[17] T. Usa : Pregeometric Shells of a Rational Curve of degree 5, Report of Univ. of Hyogo, No.15, pp.
1-16 (2004).

[18] T. Usa : An easy remark on 2-regular schemes and conjectures on pregeometric shells (Preprint),
obtainable also in [22] or in “Kakan Daisu to Daisu-kikagaku at Kochi (Commutative Algebra and
Algebraic Geometry at Kochi)” which is a report for Prof. Ogoma’s mourning memorial symposium
2004.

[19] T.Usa : Petri’s Analysis and Pregeometric Shells, a resume of talks in the 4th Symposium on
Algebraic Curves organized by Prof. A. Ohbuchi et al. at Kanagawa Inst. of Tech. , pp. 1-23 (2006).

[20] T. Usa : Pregeometric Shells of a Canonical Curve of genus ≤ 5, Report of Univ. of Hyogo, No.20,
pp. 1-15 (2009).

[21] T. Usa : Homological shell surfaces with degree 5 of a trigonal canonical curve of genus 5, Report of
Univ. of Hyogo, No.21, pp. 1-21 (2010).

[22] T. Usa : Homological shells of a projective variety with ∆-genus 0, Report of Univ. of Hyogo, No.22,
pp. 1-12 (2011).

[23] T. Usa : Homological shells of a canonical curve of genus 5 or 6 (I), Report of Univ. of Hyogo, No.23,
pp. 1-12 (2012).

13

Reports of Graduate School of Meterial Science and Graduate School of Life Science,University of Hyogo No.24(2013) 




