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Abstract

We continue to classify the homological shells of a canonical curve with genus g = 5 or g = 6.
In the case g = 5, we solve affirmatively the remaining problem on the existence of a homological
shell surface with degree 5 for any trigonal canonical curve and finish our classification in this case.
For the case g = 6, assuming that the curve is generic (i.e. non-trigonal and non-plane-quintic), we
investigate mainly good homological shells of dimension 3. We also show the inequality on ∆-genera
of homological shells coming from good homological shells of a canonical curve with g = 6, which is
predicted by our ∆-genus inequality conjecture in [13].
Keywords: (good) homological shell, pregeometric shell, canonical curve, trigonal curve, plane
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§0 Introduction.

In [13] and [17], we presented several problems based on our faith that there must exist a “geometry” of
projective embeddings which reflects the intrinsic or internal geometry of projective varieties. To real-
ize our virtual geometry on projective embeddings, we pay a special attention to intermediate ambient
schemes which satisfy certain good conditions from the view point of syzygies for the given embedded
variety. Those intermediate ambient schemes are called as homological shells (previously called as “pre-
geometric shells”), whose precise definition is given in Definition 1.1, and was first introduced in [12].
Among the problems in [13] and [17], Conjecture (1.3) including ∆-genus inequality conjecture (1.3.2)
is the most interesting and fundamental one. In a series of our articles [14], [15], [16], [18], [19], [20],
we found several evidences for the conjectures by classifying homological shells of a given embedded
projective variety.

This article is also a part of the series mentioned above. Here, we take a canonical curve of genus g = 5
or g = 6(with an assumption “generic”) as the embedded projective variety and study its homological
shells.

In the case g = 5, for a generic, namely a non-trigonal canonical curve, all its homological shells are
classified at a glance, which shows easily that the conjectures (1.3.1) and (1.3.2) hold in this case. On
the other hand, for a trigonal canonical curve, we have to consider precisely its homological shells and
find the conjectures (1.3.1) and (1.3.2) holding also in this case. However, the key part of classification of
its homological shells, which is the case that the homological shells have dimension 2, was not completed
within [18]. There we showed that a homological shell of the curve with dimension 2 is irreducible,
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reduced, arithmetically Cohen-Macaulay, and has the degree 3 or 5 if it exists. It is obvious to see that
any trigonal canonical curve of g = 5 has a unique smooth homological shell surface of degree 3. On the
other hand, it was not so easy for us to see that any trigonal canonical curve of g = 5 has a homological
shell surface of degree 5. In the subsequent article [19], for a special trigonal canonical curve of g = 5, we
construct a smooth homological shell surface of degree 5 by applying geometric method, and a singular
homological shell surface of degree 5 by applying algebraic method, respectively.

In this article, by using Brill-Noether theory, we show that every trigonal canonical curve of g = 5
has a homological shell surface of degree 5. In the case g = 6, we study a generic canonical curve,
namely a non-trigonal and non-plane-quintic canonical curve, which is defined by quadric equations (cf.
Petri’s analysis [8], [9]). Even in this case, there are still too many subcases to handle, we restrict our
selves to classify “good” homological shells. For good homological shells of a generic canonical curve of
genus g = 6, we can confirm that ∆-genus inequality conjecture (1.3.2) holds. As a help to prove the
conjecture only in this case, we also classify mainly its homological shells of dimension 3. We also add
newly Conjecture 1.8 arising from this work.

Also in this article, we use successively the notation and conventions in [5] and in [18] without mention.

§1 Preliminaries.

Let us recall our key concept for studying the geometric structures of projective embeddings. The concept
“homological shell” was introduced first in [12]. We can find many good actual examples of this concept
in a number of classical works in Complex Projective Geometry such as [8], [9], [11], [3] and so on.

Definition 1.1 (shells and cores) Take a polynomial ring S := C[Z0, . . . ZN ] of (N + 1)-variables
over the complex number field C with the usual grading, and its maximal homogeneous ideal S+ :=
(Z0, . . . ZN )S. Let V and W be closed subschemes of P = PN (C) = Proj(S) which satisfy V ⊆ W
(namely the inclusion of the defining ideal sheaves: IV ⊇ IW in the structure sheaf OP of P ; In this case,
the subscheme W is called simply an intermediate ambient scheme of V ).

(1.1.1) If the natural map:

µq : TorSq (RW , S/S+)→ TorSq (RV , S/S+)

is injective for every integer q ≥ 0 (abbr. “global Tor injectivity condition”), we say that W is
a homological shell (abbr. H-shell) of V and that V is a homological core (abbr. H-core) of W ,
where RW := S/IW and RV := S/IV denote the homogeneous coordinate rings of W and of V ,
respectively, and IW := ⊕mH0(P, IW (m)), IV := ⊕mH0(P, IV (m)).

(1.1.2) Now we set r0 := dim(W )−dim(V ). Assume that the scheme W is a homological shell of V and
that for every integer q ≥ 0, we have TorSq−r0(RW , S/S+) = 0 if TorSq (RV , S/S+) = 0. Then we
say that the scheme W is a good homological shell of V and the scheme V is a good homological
core of W .

For the subscheme V , the total space P and V itself are called as trivial (good) homological shells.

Remark 1.2 (i) Homological shell defined in (1.1.1) above was called as pregeometric shell or PG-shell
in our several previous works after we introduced this concept in [12].

(ii) The integer r0 in (1.1.2) coincides with codim(V,W ) if the scheme W is irreducible. However,
without assuming irreducibility of the scheme W , the integer r0 does not coincide with codim(V,W ) in
general.
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(iii) The condition “good” in (1.1.2) is the same to say the inequality on the homological dimen-
sions hdS(RW ) ≤ hdS(RV ) − r0, or equivalently arith.depth(W ) ≥ arith.depth(V ) + r0 by Auslander-
Buchsbaum formula. Thus, supposing that the scheme V is arithmetically Cohen-Macaulay and that the
scheme W is a homological shell of V , it is obvious that the scheme W is arithmetically Cohen-Macaulay
if and only if the homological shell W is good.

(iv) Homological shell is not always good. For example, see the example given by Remark (1.4) in
[20]. This example also shows that a closed subscheme which has an arithmetically Cohen-Macaulay
homological core is not always arithmetically Cohen-Macaulay.

Let us recall our two fundamental conjectures on homological shells from [13] and [14].

Conjecture 1.3 Let P = PN (C) be an N-th projective space with the tautological ample line bundle
OP (1) = OP (H) and V ⊆W ⊆ P its closed subschemes.

(1.3.1) Assume that the scheme V is a variety, namely reduced and irreducible and that the closed
subscheme W is a homological shell of V . Then the subscheme W is also a variety.

(1.3.2) [∆-genus inequality conjecture] Suppose that the subscheme V is arithmetically D2, namely
its arithmetic depth ≥ 2. If W is a homological shell of V , then the inequality:

∆(V,OV (1)) ≥ ∆(W,OW (1))

holds on their ∆-genera (cf. For a scheme V , its ∆-genus is defined by ∆(V,OV (1)) := dim(V )+
deg(OV (1))− h0(V,OV (1)) ; see [3]).

Remark 1.4 Previously, we assumed that both the schemes V and W are varieties in the conjecture
(1.3.2) since ∆-genus is usually defined for a pair of a variety and an ample line bundle on it. However,
the definition of ∆-genus is formally valid also for a pair of a scheme and an ample invertible sheaf on
it. It is also convenient to generalize the statement of the conjecture (1.3.2) for closed schemes from the
technical view point since the two conjectures can be handled independently. For additional information
on these two conjectures, see §1 of [16].

Remark 1.5 Let P and V ⊆ P be the same as in the Conjecture (1.3) above and assume that the
scheme V is arithmetically D2. Suppose we have two homological shells W and Z of V with W ⊆ Z.
Then, obviously the scheme Z is a homological shell of W and the scheme W is arithmetically D2. If the
conjecture (1.3.2) is true, then we have ∆(W.OW (1)) ≥ ∆(Z,OZ(1)). To find evidence for the conjecture
(1.3.2) through the classification of homological shells of a canonical curve, we have only to check the
inequality on ∆-genera among its homological shells with inclusion relation.

Definition 1.6 Let P and V ⊆ W ⊆ P be the same as in the initial setting of Conjecture (1.3). The
scheme W is called as a layered homological shell of V if there is a chain of homological shells {Yb}rb=0

of V : W = Y0 ⊂ Y1 ⊂ . . . ⊂ Yr = P and dimYb = b+m (b = 0, 1, . . . , r), where r = codim(W,P ).

Remark 1.7 Let P and V ⊆ P be the same as in Conjecture (1.3). Suppose that the scheme V is
linearly non-degenerate and that we obtain an intermediate ambient scheme W of V which is a variety
of minimal degree, namely integral and ∆(W,OW (1)) = 0. Then the variety W is a layered homological
shell of V as we saw in [19].
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Conjecture 1.8 Let P and V ⊆ P be the same as in Conjecture (1.3) above. If the scheme V is
arithmetically Cohen-Macaulay, then any good homological shell W of V is a layered homological shell of
V ?

Remark 1.9 If the scheme V is a variety of ∆(V,OV (1)) = 0, then the statement of Conjecture 1.8 is
affirmative by Remark 1.7 and [19].

§2 Main Results.

Let us summarize our results in this article. The first one is to give an affirmative answer to our remaining
problem in [18] and [19].

Theorem 2.1 Let X ⊂ P = P4(C) be a trigonal canonical curve of genus 5. Namely, taking a non
hyperelliptic curve C of genus g(C) = 5 with a complete base point free linear system g13 and its canonical
embedding Φ|KC | : C → P = P4(C), we set X := Φ|KC |(C). Then there always exists an integral
homological shell surface Z of X with degZ = 5.

An interesting application of the theorem above is the following criterion on trigonality.

Corollary 2.2 Let X ⊂ P = P4(C) be a canonical curve of genus 5. Then the canonical curve X is
trigonal if and only if it has a homological shell surface Z of degree 5.

We also add here the following result which has been essentially proved in [18]. This formulation is
rather stronger than that of Main Theorem 2.1 in [18].

Theorem 2.3 Let X ⊂ P = P4(C) be a canonical curve of genus 5. Take any two homological shells Y
and Z of the curve X with Y ⊆ Z. Then we always have : ∆(Y,OY (1)) ≥ ∆(Z,OZ(1)).

Now we consider a canonical curve of genus g = 6. From the view point of Petri’s Analysis (cf. [8],
[9]), there are 3 classes in the canonical curves of genus 6 : (i) plane quintic case ; (ii) trigonal case ;
(iii) generic case (non-trigonal and non-plane-quintic). Here we handle the cases (i) only. From the view
point of Remark 1.5, we classify roughly homological shells of the canonical curve in this case and check
their ∆-genera. Next theorem gives an evidence for the conjecture (1.3.2).

Theorem 2.4 Let X ⊂ P = P5(C) be a generic canonical curve of genus 6. Take any two good homo-
logical shells Y and Z of the curve X with Y ⊆ Z. Then we always have : ∆(Y,OY (1)) ≥ ∆(Z,OZ(1)).

Our rough classification on homological shells of a generic canonical curve of genus 6 is given as follows.
We should make a remark that our classification on 2-dimensional homological shells is not finished yet,
which is excluded here and will be handled in a forthcoming paper.

Theorem 2.5 Let X ⊂ P = P5(C) be a generic canonical curve of genus 6 and W be a good homological
shell of X. If codim(W,P ) ̸= 3, then the scheme W is irreducible, reduced and arithmetically Cohen-
Macaulay.

If codim(W,P ) = 4, then W = X.

If codim(W,P ) = 1, then W is a quadric hypersurface.

If codim(W,P ) = 2, then ∆(W,OW (1)) = 0 or 1.

More explicit information on these homological shells will be given in the last section.
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§3 Review on Classical Results.

Let us summarize the classical works on canonical curves mainly from [10], [11] without any proof. For
later use, our notation is a little different from [11](e.g. the symbol S(e1, e2, . . . , em) is used not only for
the type of a rational scroll but also for a rational scroll itself). When we consider a linear system, we
always take the complete linear system otherwise mentioned particularly. Hence we do not distinguish
the differences among line bundles, Cartier divisor classes, and linear systems.

Taking non negative integers {ei}mi=1 with e1 ≥ e2 ≥ . . . ≥ em ≥ 0, we set B = P1(C), and the
vector bundle E = ⊕m

i=1OB(ei) on the rational curve B, where the invertible sheaf OB(1) is the ample
tautological line bundle of B. Set d = e1 + · · ·+ em, N = d+m− 1, a morphism φ to be the morphism
from U = P (E) = P(E) to P = PN (C) defined by the complete linear system |OP (E)/B(1)|, a closed
variety W = S(e1, e2, . . . , em) ⊆ P to be the image of φ, a morphism π : P (E)→ B to be the structure
morphism of the projective bundle, and assume d ≥ 2. Since deg(W ) = d, dimW = m, the variety W is
a variety of minimal degree, i.e. ∆(W,OP (1)⊗OW ) = 0.

The morphism φ is an embedding if and only if em > 0. If e1 ≥ e2 ≥ . . . ≥ ek > 0 = ek+1 = . . . = em,
then the variety W = S(e1, e2, . . . , em) is a (d− k) multiple cone of the k-dimensional nonsingular pro-
jective subvariety S(e1, e2, . . . , ek) and the morphism φ : U →W is a resolution of rational singularities.
In this case, the singularities of W = S(e1, e2, . . . , em) coincides with the vertices, which is (m− k − 1)-
dimensional linear space.

The divisor classes H = φ∗OP (1), R = π∗OB(1) form a free basis of Pic(P (E)) as Z-modules. In the
Chow ring A•(P (E)), we have : Hm = d, Hm−1 ·R = 1, and R2 = 0.

For integers i > 0, a ∈ Z, b ≥ −1, we have Riφ∗OP (E)(aH + bR) = 0, and set a coherent sheaf
OW (aH + bR) = φ∗OP (E)(aH + bR) including the case b < −1.

Let us take a section σi ∈ H0(P (E), OP (E)(H − eiR)) which corresponds to an i-th direct factor
OP (E)(ei) ↪→ E. Taking a homogeneous coordinates [s : t], we set Zp.q := sep−qtqσp (p = 1, . . . ,m ; q =
0, . . . , ep), and a 2× d matrix Φ to be :

Φ =

[
Z1,0 · · · Z1,e1−1 Z2,0 · · · Z2,e2−1 · · · · · · Zm,0 · · · Zm,em−1

Z1,1 · · · Z1,e1 Z2,1 · · · Z2,e2 · · · · · · Zm,1 · · · Zm,em

]
.

Then the matrix Φ can be considered as the homomorphism of sheaves : Φ : F = ⊕dOP (−1) →
G = ⊕2OP . From this homomorphism Φ, we can construct a family of complexes Cb• (b ∈ Z) which
resolve the b-th symmetric powers of CokerΦ by OP -free modules, and are a kind of generalized Eagon-
Northcott complexes, or named as Buchsbaum-Eisenbud complexes associated to Φ (cf. [2]). The complex
Cb• = {Cbi , δi : Cbi → Cbi−1} is :

Cbi =

{ ∧i
F ⊗ Sb−iG 0 ≤ i ≤ b∧i+1

F ⊗Di−b−1(G
∗)⊗

∧2
G∗ i ≥ b+ 1,

where SjG andDj(G
∗) = (Sj(G))∗ denote the j-th symmetric power of G and j-th divided power,respectively

and δi = Φ if i ̸= b+1 and δb+1 = ∧2Φ ∈ H0(P,∧2F ∗⊗∧2G). For integers a and b ≥ −1, it is known that
the complex Cb•(a) = Cb•⊗OP (a) gives a minimal OP -free resolution of the coherent sheaf OW (aH + bR).

Now we review classical Brill-Noether theory briefly (cf. [1], [7], [4]). Let C be a non-singular complex
non-hyperelliptic projective curve of genus g ≥ 3. In the Picard variety PicdC which parametrizes the
line bundles of degree d on C, we consider the Brill-Noether locus :
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W r
d := {ξ ∈ PicdC|degξ = d, h0(ξ) ≥ r + 1} ⊆ PicdC,

which is a Zariski closed set. Now we set the Brill-Noether number ρ := g − (r + 1)(g + r − d). If
ρ ≥ 0, then W r

d ̸= ϕ and each irreducible component of W r
d has at least the dimension ρ. Moreover, if

2 ≤ d ≤ g − 1 and 0 < 2r ≤ d, then dimW r
d ≤ d− 2r − 1.

If the curve C is generic in its moduli, the curve admits a base point free pencil g1d with g/2 + 1 ≤
d < g/2 + 2 and no pencil of lower degree.

Remark 3.1 If g = 5, then dimW 1
4 = 1 and dimW 1

3 ≤ 0, which implies that any non-hyperelliptic curve
C of genus g = 5 always has a base point free pencil g14. If g=6, then 0 ≤ dimW 1

4 ≤ 1 and dimW 1
3 ≤ 0.

Hence, almost every curve C of genus g = 6 has a complete base point free pencil g14 except the ones
which have only g13’s.

Let us take a canonical curve X ⊂ P = Pg−1(C) of genus g ≥ 5 with a base point free complete pencil
g1d = {Dλ}λ∈P1 of degree d ≤ g − 1 on X. By the theorem of Riemann-Roch in the geometric version for
an effective divisor D on X :

dimD = degD − 1− dim |D|,

where D denotes the linear span of D in P , we have dimDλ = d− 2. By the theorem of Harris-Bertini
(cf. [6], [11]), the set

W =
∪

λ∈P1

Dλ

includes the curve X and is a (d− 1)-dimensional rational normal scroll of degree f = g − d+ 1, whose
type S(e1, . . . , ed−1) depends on and determines the dimensions h0(X,OX(iDλ)) for i ≥ 0. In particular,
we obtain

e1 + . . .+ ed−1 = f = g − d+ 1,
2g − 2

d
≥ e1 ≥ . . . ≥ ed−1 ≥ 0.

For d = 3, 4, more precise facts are known as in [11].
If d = 3, namely the canonical curve curve X is trigonal, then W = S(e1, e2) and

2g − 2

3
≥ e1 ≥ e2 ≥

g − 4

3
.

In the resolution of singularities φ : U = P (E) → W , the linear equivalence X ∼ 3H − (f − 2)R holds.
For g ≥ 5, the linear system g13 is unique for the trigonal canonical curve X.

If d = 4, then the strict transform of the curve X in the resolution of singularities φ : U = P (E) →
W = S(e1, e2, e3) is a complete intersection of two divisors Y ∼ 2H − b1R and Z ∼ 2H − b2R with
b1 + b2 = f − 2 and f − 1 ≥ b1 ≥ b2 ≥ −1.

Further more information in the case g = 5 or g = 6 can be found in [10]. For example, if we assume
that d = 4, g = 6 and the canonical curve X is generic, then Y ∼ 2H − R, Z ∼ 2H and W = S(1, 1, 1)
or W = S(2, 1, 0). This fact will be used in §5.
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§4 Proof of the Results on g=5.

Let us give a proof of Theorem 2.1. Take a trigonal canonical curve X ⊂ P = P4(C) of genus g = 5 as
in the theorem. By Remark 3.1, we have a base point free pencil g14 on X. Then, by the facts in the last
part of §3, we see that this pencil g14 induces a singular rational scroll W of dimension 3 : X ⊂ W ⊂ P ,
where W = S(1, 1, 0) or S(2, 0, 0) and that the curve X is a complete intersection by the 2 effective
divisors Y and Z of the 3-fold U = P (E). There are 2 cases : (i) Y ∼ 2H, Z ∼ 2H ; (ii) Y ∼ 2H − R,
Z ∼ 2H + R. The first case (i) implies that the curve X is a (2, 2, 2) complete intersection in P and is
not trigonal, which is absurd. Thus we have the case (ii) and W = S(1, 1, 0). In this case, we see that
deg Y = Y.H2 = (2H −R).H2 = 2 · 2− 1 = 3, degZ = (2H +R).H2 = 2 · 2 + 1 = 5. It is easy to check
that the scheme Y is the Hirzebruch surface F1 and the curve X has a g13 . Now we have a OU -locally
free resolution of OX and OZ :

0 ←−−−− OX ←−−−− OU ←−−−− OU (−2H +R)⊕OU (−2H −R) ←−−−− OU (−4H) ←−−−− 0x ∥∥∥ x
0 ←−−−− OZ ←−−−− OU ←−−−− OU (−2H −R) ←−−−− 0

Hence, by taking a multiple mapping cone and a (simple) mapping cone:[
C0• ←

[
C1•(−2)⊕ C−1

• (−2)← C0•(−4)
] ]x[

C0• ← C−1
• (−2)

]
,

we obtain a natural inclusion homomorphism of complexes from a minimal OP -free resolution of OZ to
a minimal OP -free resolution of OX , which implies that the scheme Z is a homological shell surface of
the curve X with degree 5, which means that the scheme Z is irreducible and reduced.

To prove Corollary 2.2, it is enough to show that a non-trigonal canonical curve of g = 5 does not
have a homological shell surface of degree 5, which is easy and has been already checked in [18].

Let us draw roughly inclusion diagrams for homological shells of the canonical curve X of genus g = 5.
The diagram in the left hand side is for non-trigonal curves. The one in the right hand side is for the
trigonal curves. Arrows in the diagrams denote inclusions. Q’s denote quadric hypersurfaces and D
denotes a cubic hypersurface. The defect in these diagrams is not to reflect the movements of objects
in their families. For example, if we fix the curve X, then the inclusion α or Y is unique. However, the
inclusion β is not unique, and the target Q moves in the linear system of dimension 2 whose base locus
is Y . On the other hand, when we fix the surface Z, then the inclusion γ or the target Q is unique.
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(X = Q ∩Q1 ∩Q2,∆ = 4)

(Q ∩Q1,∆ = 1)

(Q,∆ = 0)

(P,∆ = 0)

?

?

?

(X = Y ∩ Z,∆ = 4)

(Z,∆ = 2) (Y = F1,∆ = 0)

(D,∆ = 1) (Q,∆ = 0)

(P,∆ = 0)

HHHHHHHj

α
��������

?

XXXXXXXXXXXXXXXz
γ

?
β

HHHHHHHj

��������

Now it is easy to check the statement of Theorem 2.3 by looking the inclusion diagrams above.

§5 Proof of the Results on g=6.

In this section, we consider a generic canonical curve X ⊂ P5(C) = P of genus g = 6 and prove Theorem
2.4 and Theorem 2.5 simultaneously since each proof does not go separately. Let us start from studying
graded Betti numbers of the homological shells of the curve X. As usual, we set S = C[Z0, · · · , Z5],
S+ = (Z0, · · · , Z5)S, and W to be a good homological shell of X. By Remark 1.2 (iii), the scheme W is
also arithmetically Cohen-Macaulay.

If the curve X is generic, the minimal S-free resolution of the homogeneous coordinate ring RX is
known to be :

0 ←−−−− RX ←−−−− S ←−−−− S(−2)6 ←−−−− S(−3)5 ⊕ S(−4)5 ←−−−− S(−5)6

←−−−− S(−7)1 ←−−−− 0.

From the conditions of homological shells, each term of the minimal S-free resolution of the homogeneous
coordinate ring RW is a direct factor of the corresponding term in the resolution for RX . Thus we have :

0 ←−−−− RW ←−−−− S ←−−−− S(−2)a1 ←−−−− S(−3)a2 ⊕ S(−4)b2 ←−−−− S(−5)b3

←−−−− S(−7)b4 ←−−−− 0

Of course, we have 0 ≤ a1 ≤ 6, 0 ≤ a2 ≤ 5, 0 ≤ b2 ≤ 5, 0 ≤ b3 ≤ 6, and 0 ≤ b4 ≤ 1 for these graded Betti
numbers (cf. a1 = β1,2, b2 = β2,4 etc., where βi,j stands for the i-th Betti number in degree j). Now we
consider the Hilbert polynomial AW (m) of the scheme W :

AW (m) =
N∑

k=0

pk(W )Ak(m) Ak(x) :=

(
x+ k
k

)
.
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By applying Lemma 2.6 in [14], we can write down the Hilbert polynomial AW (m) ofW which is described
by these graded Betti numbers.

p5 = p5(W ) = 1− a1 + a2 + b2 − b3 + b4
p4 = p4(W ) = 2a1 − 3a2 − 4b2 + 5b3 − 7b4
p3 = p3(W ) = −a1 + 3a2 + 6b2 − 10b3 + 21b4
p2 = p2(W ) = −a2 − 4b2 + 10b3 − 35b4
p1 = p1(W ) = b2 − 5b3 + 35b4
p0 = p0(W ) = b3 − 21b4

For example, if we want to find every homological shell of dimension 1, we have only to solve p5 =
p4 = p3 = p2 = 0 and p1 > 0 within the range given above. Then we get a1 = 6, · · · , which means that
the homological shell W is defined by using all the equations of X, namely W = X.

Next we consider the case dimW = 2, namely p5 = p4 = p3 = 0 and p2 > 0 with the range
above. In this case, d = degW = p2 and we have two solutions : (a1, a2, b2, b3, b4; d) = (4, 2, 3, 2, 0; 6) and
(5, 5, 0, 1, 0; 5). In both solutions, we have b4 = 0, which shows hdS(RW ) ≤ 3, namely arith.depth(RW ) ≥
6 − 3 = 3, and therefore the homogeneous coordinate ring RW of W is Cohen-Macaulay. In the case
dimW = 2, without assuming goodness, the homological shells are automatically good. By the reason
that the scheme W includes the curve X which is linearly non-degenerate, we have h0(W,OW (1)) = 6.
Hence, the ∆-genus : ∆(W,OW (1)) = deg(W ) + 2− h0(W,OW (1)) = 2 or 1.

Now we study the case dimW = 3, or equivalently p5 = p4 = 0 and d = degW = p3 > 0. Solving
these equations within the range above, we have 16 solutions including a solution : (a1, a2, b2, b3, b4; d) =
(3, 0, 4, 2, 0, 1). This solution looks impossible since its degree is too low. However, b3 = 2 ̸= 0 means that
the scheme W is not arithmetically Cohen-Macaulay and might be non-equidimensional. For example,
the scheme W might be the union of a 3-plane and a 2-dimensional scheme including the curve X.

To avoid these complicated situations, here we assume the goodness of the scheme W , namely
b3 = b4 = 0. Then, the scheme W is equidimensional with dimW = 3. We have only two solutions:
(a1, a2, b2, b3, b4; d) = (2, 0, 1, 0, 0, 4) or (3, 2, 0, 0, 0, 3). Since a1 ≥ 2 and the curve X is integral, the
scheme W is a subscheme of (2, 2)-complete intersection U . The scheme U has degU = 4. In the case of
degW = 4, W = U , where the type of Betti numbers of the scheme W : (a1, a2, b2, b3, b4) = (2, 0, 1, 0, 0)
coincides with that of (2, 2)-complete intersections. We will discuss the integrality of the scheme W later
on.

Now we consider the case (a1, a2, b2, b3, b4; d) = (3, 2, 0, 0, 0, 3). Take an irreducible component W0 of
W which includes the curve X. Since the curve X is linearly non-degenerate, the scheme (W0)red with
reduced structure has at least degree 3. Therefore W = (W0)red, which means that the scheme W is
a variety. Since the variety W is arithmetically Cohen-Macaulay and linearly non-degenerate, we have
h0(W,OW (1)) = 6, which implies that ∆(W,OW (1)) = 3 + 3− 6 = 0, namely the variety W is a variety
of minimal degree. Hence W = S(e1, e2, e3) with e1 + e2 + e3 = 3 and e1 ≥ e2 ≥ e3 ≥ 0.

Let us go back to the case (a1, a2, b2, b3, b4) = (2, 0, 1, 0, 0). Take again an irreducible component
W0 of W which includes the curve X. Then, it is easy to see that 2 · deg(W0)red ≥ 6 > degW = 4 ≥
deg(W0)red ≥ 3. Hence we obtain W0 = (W0)red, namely W0 is reduced. Assume that degW0 = 3. Then
the scheme W0 is a variety of minimal degree and therefore arithmetically Cohen-Macaulay. By using
the assumption of a homological shell, from the successive inclusions : X ⊂ W0 ⊂ W , we get a natural
injective homomorphism : C1 ∼= TorS2 (RW , S/S+)(4) → TorS2 (RW0 , S/S+)(4) → TorS2 (RX , S/S+)(4) ∼=
C5, where the lower indices “(k)” in right hand side of each term denote taking its degree k-part. By
the reason that the variety W0 is of minimal degree, the homogeneous coordinate ring RW0 has a 2-linear
resolution, which shows that TorS2 (RW0 , S/S+)(4) = 0, which induces a contradiction. Thus we see that
the scheme W is integral.
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Now we check the existence of those homological shells. Take a generic canonical curve X ⊂ P5(C)
of genus g = 6. By Remark 3.1, we see that the curve X has the base point free complete linear system
g14 of degree d = 4. Recalling the fact in the last part of §3, there is a 3-dimensional rational normal
scroll W = S(1, 1, 1) or W = S(2, 1, 0) including the curve X such that in the resolution of singularities
φ : U = P (E) → W , the strict transform of the curve X is a complete intersection of effective divisors
Y ∼ 2H − R and Z ∼ 2H. Then, by using the fact H3 = 3 and the similar calculation as in §4, we
have deg Y = 5 and degZ = 6. Since the variety W = S(1, 1, 1) or W = S(2, 1, 0) is arithmetically
Cohen-Macaulay, the divisor Z can be obtain by cutting the variety W with a quadric hypersurface Q′,
namely Z = W ∩ Q′. Let us see that both the scheme Y and Z are homological shells of the curve X.
By the construction of the curve X, we have a OU -locally free resolution of OX and OY :

0 ←−−−− OX ←−−−− OU ←−−−− OU (−2H +R)⊕OU (−2H) ←−−−− OU (−4H +R) ←−−−− 0x ∥∥∥ x
0 ←−−−− OY ←−−−− OU ←−−−− OU (−2H +R) ←−−−− 0

Hence, by taking a multiple mapping cone and a (simple) mapping cone:[
C0• ←

[
C1•(−2)⊕ C0•(−2)← C1•(−4)

] ]x[
C0• ← C1•(−2)

]
,

we obtain a natural inclusion homomorphism of complexes from a minimal OP -free resolution of OY to
a minimal OP -free resolution of OX , which implies that the scheme Y is a homological shell of the curve
X. We can use the same method to show that the scheme Z is also a homological shell of X. Now
we take a quadric hypersurface Q including the variety W = S(e1, e2, e3) where (e1, e2, e3) = (1, 1, 1) or
(e1, e2, e3) = (2, 1, 0). Since the variety Q is a homological shell of the variety W , the scheme Q∩Q′ is a
homological shell of the scheme Z = W ∩Q′. On the other hand, the scheme Z is a homological shell of
X. Thus the scheme Q ∩Q′ is a homological shell of the curve X.

Let us go back to the general situation of this section. Take two homological shells W and W ′ of
the curve X. Then, their graded Betti numbers (a1, a2, b2, b3, b4) and (a′1, a

′
2, b

′
2, b

′
3, b

′
4) satisfy a1 ≤ a′1,

a2 ≤ a′2, b2 ≤ b′2, b3 ≤ b′3, and b4 ≤ b′4 if there is an inclusion W ⊇ W ′. Hence, by comparing the
graded Betti numbers, we can write down the (maximum) inclusion diagram of the homological shells of
the curve X. Here we use the word “maximum” to show the set of inclusions is the maximum, namely
some of arrows for inclusions might be missing in the real situation. As we saw, this maximum inclusion
diagram is realized by the examples in the proof of existence above.

To write down the maximum inclusion diagram, let us denote 2-dimensional homological shell of the
curve X with graded Betti numbers and degree : (a1, a2, b2, b3, b4; d) = (5, 5, 0, 1, 0; 5) and (4, 2, 3, 2, 0; 6)
by Y and Z, respectively.

Then the maximum inclusion diagram is :
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(X,∆ = 5)

(Z,∆ = 2) (Y,∆ = 1)

(Q ∩Q′,∆ = 1) (S(e1, e2, e3),∆ = 0)

(Q,∆ = 0)

(P,∆ = 0).

������� ?

?

HHHHHHj ?

HHHHHHj ?

?

Now it is easy to check the statement of Theorem 2.4, namely the monotonously decreasing of the
∆-genera by following arrows from the top X to the bottom P in the maximum inclusion diagram above.

Remark 5.1 From the view point of classifying 2-dimensional homological shells of the curve X including
trigonal case and plane-quintic case, it looks very important for us to get the claim of Conjecture 1.8.
For example, it is not so easy to identify the scheme (Z,∆ = 2) in the inclusion diagram above without
this conjecture.
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