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Abstract

For a given trigonal canonical curve X of genus 5, we study projective surfaces of degree 5 in P4(C)
which may have singularities and are “homological shells” (i.e. an alias of “pregeometric shells”)
of the curve X. In [16], we found the possibilities of their existence and that these surfaces are
the homological shells of new type if they exist. Here, in two ways, we construct examples of such
surfaces. One way is rather algebraic and to apply the explicit minimal free resolutions exploited in
[16], the other one is a more general and geometric way stimulated by an idea of Prof. A. Ohbuchi.
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§0 Introduction.

In [16], we classified all the homological shells (previously we called them as “pregeometric shells”) of a
canonical curve X of genus ≤ 5. In the process of this classification, we found interesting phenomena that
if the curve X is a non-trigonal canonical curve of genus 5, its homological shells of dimension 2 are always
arithmetically Cohen-Macaulay varieties of ∆-genus 1, and that if the curve X is a trigonal canonical
curve of genus 5, its homological shells of dimension 2 are always arithmetically Cohen-Macaulay varieties
of ∆-genus 0 or ∆-genus 2. In case of ∆-genus 0, it is well known from around a hundred years ago that
for a given trigonal canonical curve X of genus 5, such a homological shell surface always exists uniquely
and is smooth. On the other hand, if ∆-genus 2, we could not prove their existence, their uniqueness,
nor smoothness within our previous work [16].

Frankly speaking, the author expected in the first place that the case of ∆-genus 2 can not occur
really. However, Prof. A. Ohbuchi kindly suggested a possibility of this case by constructing a surface of
degree 5 containing a trigonal curve of genus 5 as an image of a morphism given by a linear system. But,
at the early stage, it was not so easy to analyze explicitly the syzygies (in particular, each differential
map of the complex) of the surface. Then, to construct a homological shell surface with ∆-genus 2 of a
trigonal canonical curve X of genus 5, the author tried to apply the explicit minimal free resolutions in
[16], obtained an example of such a surface by writing down its equations explicitly, and found that the
surface is not smooth. Hence we find a fact that contrary to the case of ∆-genus 0, homological shell
surfaces with ∆-genus 2 of a trigonal canonical curve X of genus 5 are not smooth in general. After the
discovery of this example, we returned to study the surface of degree 5 constructed by Prof. A. Ohbuchi,
and found another way of constructing the same surface, which help us to show that the surface is also
a homological shell of the curve X (cf. Remark 3.8).
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Thus, in this article, we construct examples of the homological shell surfaces of ∆-genus 2 in two
ways described above. Between the two ways, the former one is rather algebraic and the latter one is
rather geometric. We expect that each method of construction has an advantage in a different aspect
respectively. In these examples, the curve X never be a hypersurface cut of the homological shell surface
W because deg(X) = 8, deg(W ) = 5. Moreover, the surface W is of ∆-genus 2, which never be a variety
of minimal degree. So, these examples are not typical examples of homological shells already known and
are a new type of homological shells.

In this article, we use successively the notation and conventions in [16] without mention.
The author would like to express his deep gratitude again to Prof. A. Ohbuchi for his useful suggestion

which leads into finding a new type of homological shells.

§1 Preliminaries.

In this section, we make preparations for our argument with summarizing several facts and concepts
appeared in our previous papers : [13] ∼ [16].

Notation and Conventions 1.1 For simplicity, an integral projective scheme of dimension 2 and an
integral projective scheme of dimension 1 are called a surface and a curve, respectively. The both objects
may have singularities in general.

On the other hand, when we say that a non-degenerate closed subscheme X of a projective space is a
canonical curve, it means that there is a non-hyperelliptic smooth projective curve C of genus g ≥ 3, and
the image of the canonical embedding Φ|KC | : C → Pg−1(C) coincides with X. Hence, canonical curves
are always smooth.

To handle Hilbert polynomials efficiently, the Hilbert polynomial χ(OPk(m)) of P k = Pk(C) is written
by Ak(m), where

Ak(x) :=

(
x+ k
k

)
=

(x+ k)(x+ k − 1) · · · (x+ 1)

k!
.

For a coherent OP -module F on P = PN (C), its Hilbert polynomial χ(F (m)) = AF (m) is expressed in
the form:

AF (m) =
N∑

k=0

pk(F )Ak(m).

For a closed subscheme V ⊆ P , we use the symbols: AV (m) and pk(V ) instead of AOV (m) and pk(OV ),
respectively.

Remark 1.2 Since Ak(m)−Ak(m−1) = Ak−1(m), we have Ak(m) =
∑k

j=0 Aj(m−1). For a projective

subvariety V ⊂ PN (C) of dimension n, if we write down the Hilbert polynomial of the variety V in the
form AV (m) =

∑n
k=0 χk(V )Ak(m − 1), then we have χk(V ) =

∑n
j=k pj(V ), in particular, χn−1(V ) =

pn(V )+ pn−1(V ). In this case, the sectional genus g(V,OV (1)) = 1−χn−1(V ) = 1− (pn(V )+ pn−1(V )),
the ∆-genus ∆(V,OV (1)) = n+ deg V − h0(V,OV (1)), and deg V = pn(V ) = χn(V ). (cf. [5]).

Remark 1.3 On the theory of singular curves such as Riemann-Roch theorem and vanishing theorems,
we often refer to [7] and exercises in [6]. In particular, for a singular projective curve C, ωC and pa(C)
denote the dualizing sheaf and the arithmetic genus (or virtual genus) i.e. h1(C,OC), respectively.
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Let us recall our key concepts for studying the geometric structures of projective embeddings. The
two of them, namely “H-shell” and “G-shell”, were introduced first in [13]. We can find many good actual
examples of these concepts in a number of classical works in Complex Projective Geometry such as [9],
[10], [11], [5] and so on.

Definition 1.4 (shells and cores) Take a polynomial ring S := C[Z0, . . . ZN ] of (N + 1)-variables
over the complex number field C with the usual grading, and its maximal homogeneous ideal S+ :=
(Z0, . . . ZN )S. Let V and W be closed subschemes of P = PN (C) = Proj(S) which satisfy V ⊆ W
(namely the inclusion of the defining ideal sheaves: IV ⊇ IW in the structure sheaf OP of P ; In this case,
the subscheme W is called simply an intermediate ambient scheme of V ).

(1.4.1) If the natural map:

µq,x : TorOP,x
q (OW,x, OP,x/mP,x)→ TorOP,x

q (OV,x, OP,x/mP,x)

is injective for any integer q ≥ 0 and for any point x on V (abbr. “local Tor injectivity condi-
tion”), we say that W is a local shell of V and that V is a local core of W , where mP,x denotes
the maximal ideal of the local ring OP,x.

(1.4.2) If the natural map:

µq : TorSq (RW , S/S+)→ TorSq (RV , S/S+)

is injective for every integer q ≥ 0 (abbr. “global Tor injectivity condition”), we say that W is
a homological shell (abbr. H-shell) of V and that V is a homological core (abbr. H-core) of W ,
where RW := S/IW and RV := S/IV denote the homogeneous coordinate rings of W and of V ,
respectively, and IW := ⊕mH0(P, IW (m)), IV := ⊕mH0(P, IV (m)).

(1.4.3) If the schemes V and W are closed subvarieties, the variety W is a local shell of V , and also a
homological shell of V , then we say that the variety W is a geometric shell (abbr. G-shell) of V
and the variety V is a geometric core (abbr. G-core) of W .

For the subscheme V , the total space P and V itself are called trivial PG-shells (or trivial G-shells if V
is a variety).

Remark 1.5 Homological shell defined in (1.4.2) above was called as Pregeometric shell or PG-shell in
our previous works after we introduced this concept in [13].

On geometric shells, we have slightly modified in [15] its definition from the one including the condi-
tion: V ⊆ Reg(W ) in [13] to the other one including the condition of local Tor injectivity as in (1.4.3).

Let us give a review by summarizing our previous results as a theorem. Here we should emphasize again
that our “schemes” of course may have a non-equidimensional component or a non-reduced structure.

Theorem 1.6 (cf.[16]) Let X ⊆ P = Pg−1(C) be a canonical curve of genus g ≤ 5. Namely, taking
a non hyperelliptic curve C of genus 3 ≤ g = g(C) ≤ 5 and its canonical embedding Φ|KC | : C → P =
Pg−1(C), we set X := Φ|KC |(C). Suppose that a closed subscheme W ⊆ P is a homological shell of
X. Then the scheme W is always arithmetically Cohen-Macaulay and is a variety, namely irreducible
and reduced. Moreover, the inequality : ∆(W,OW (1)) ≤ ∆(X,OX(1)) = ∆(C,KC) = g − 1 holds,
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where the ample line bundles OW (1) and OX(1) are the restrictions of the ample tautological line bundle
OP (1) = OP (H).

In case of g = 5 and dimW = 2, then ∆(W,OW (1)) = 1 if the curve X is non-trigonal, ∆(W,OW (1)) =
0, 2 if the curve X is trigonal.

Moreover, if ∆(W,OW (1)) = 2 in the latter case above, then the Hilbert polynomial AW (m) of the
surface W has the form : AW (m) = 5 ·A2(m)− 6 ·A1(m) + 2, which implies that the sectional genus of
the surface W is g(W,OW (1)) = 2 (cf. Remark 1.2). In this case, the homogeneous ideal of the surface
W is generated minimally by 1 quadric equation and 2 cubic equations which form a part of minimal
generators of the homogeneous ideal of the curve X, which is generated minimally by 3 quadric equations
and 2 cubic equations. (cf. [16] (#-3), Table 1 )

From several classical references, let us recall some results which we use later.

Theorem 1.7 (Fujita cf. [5] (3.5)) Let (V,L) be a polarized variety of dimension n having a ladder.
Assume an inequality on the sectional genus and the ∆-genus : g(V, L) ≥ ∆(V, L). Then we have

(1.7.1) the ladder is regular if deg(V, L) ≥ 2∆(V, L)− 1,

(1.7.2) Bs|L| = ϕ if deg(V,L) ≥ 2∆(V, L),

(1.7.3) L is simply generated, g(V,L) = ∆(V,L), and Hq(V, tL) = 0 for any t, q ∈ Z with 0 < q < n,
if deg(V, L) ≥ 2∆(V, L) + 1. In this case, the complete linear system |L| is very ample, and the
embedded variety V ⊆ PN (C) by the linear system |L| is arithmetically Cohen-Macaulay, where
N = dim |L|.

Lemma 1.8 (Castelnuovo bound, cf. e.g. [1]) Let C ⊆ PN (C) (N ≥ 3) be a non-degenerate smooth
projective curve of degree d and genus g. Take integers q and r which satisfy d − 1 = (N − 1)q + r and
N − 1 > r ≥ 0. Then the genus of the curve C satisfies the inequality:

g ≤ q(q − 1)(N − 1)

2
+ qr.

Moreover, if the equality above holds, then the curve C is arithmetically normal.

The next classical result on an inner projection is well-known roughly in some way, whose rigorous
proof can be found in e.g. [4].

Lemma 1.9 Let V ⊆ PN (C) be a projective subvariety and x0 ∈ V a (closed) point. Taking a hyperplane
H ⊂ PN (C) which does not contain the point x0, we consider a linear projection f : PN (C)− {x0} → H
and set the closure of the image f(V − {x0}) to be W . Then we have:

deg f · degW = deg V − e(OV,x0),

where e(OV,x0) denotes the multiplicity of the local ring OV,x0 , which will be denoted simply also by e(x0).
In this case, the morphism f |V ◦ : V ◦ := V −{x0} →W is called an inner projection of V from the center
x0.
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§2 Surfaces of degree 5 and trigonal canonical curves of genus 5

As a preparation for our later argument, without assuming smoothness, let us study a curve of degree 5
in P3(C).

Lemma 2.1 Let C ⊂ P3(C) be a non-degenerate integral closed subscheme of dimension 1 with degree

5. Consider the normalization C̃ → C of the curve C. Then the genus g̃ = g(C̃) of C̃ takes the value
g̃ = 0, 1, 2. Moreover, even if we assume that the curve C is arithmetically Cohen-Macaulay, the genus g̃
takes the value in the same range.

Proof. First we assume that the curve is smooth. Then, C̃ = C, we apply the Castelnuovo bound in
Lemma 1.8 and get g̃ ≤ 2. Now we suppose that the curve C has a singular point x0. Take the inner
projection f : C − {x0} → D ⊂ H ∼= P2(C) of C from the center x0. Apply Lemma 1.9, we see that

deg f · degD = degC − e(x0) ≤ 5− 2 = 3.

Since the curve C is non-degenerate, we have degD ≥ 2 and therefore deg f = 1 and degD = 2, 3, which
means the rational map f is birational. Now the curve D is a divisor of P2(C) with degree 2 or 3, which

implies that the arithmetic genus takes the value pa(D) = 0, 1. Then the normalization D̃ → D of the

curve D coincides with C̃, which shows that g̃ = 0, 1.
Let us construct non-degenerate arithmetically Cohen-Macaulay projective curves of degree 5 with

g̃ = 0, 1, 2.
Put U := P1 × P1 and a morphism pri : U → P1 (i = 1, 2) to be the projection to the i-th factor. For

a point x ∈ P1, we set the i-th ruling hi := pr−1
i (x) on the surface U . If a, b ∈ Z≥0, the linear system

|ah1+bh2| has the dimension ab+a+b. Now we give an embedding of U into P3(C) by using a very ample
complete linear system |h1 + h2|. Then, any effective divisor D ∈ |2h1 + 3h2| has the degree 5 in P3(C).
Since the canonical divisor KU of the surface U satisfies |KU | = | − 2h1 − 2h2|, the adjunction formula
shows that the effective divisor D has the arithmetic genus pa(D) = 2 if the divisor D is irreducible and
reduced. Now we take two points q1, q2 ∈ U with pri(q1) ̸= pri(q2) (i = 1, 2).

It is easy to see that the linear system Λ := |2h1 + 3h2 − 2q1 − 2q2| has no unassigned base point,
namely BsΛ = {2q1, 2q2}. In fact, by Λ ⊇ |h1 + h2 − q1 − q2|+ |h1 + h2 − q1 − q2|+ |h2|, we have only
to show that Bs|h1 + h2 − q1 − q2| = {q1, q2}. Set divisors F1 := pr−1

1 ◦ pr1(q1) + pr−1
2 ◦ pr2(q2) and

F2 := pr−1
1 ◦ pr1(q2) + pr−1

2 ◦ pr2(q1). Then the both divisors F1 and F2 are the members of the linear
system |h1 + h2 − q1 − q2| and F1 ∩ F2 = {q1, q2}, which means that Bs|h1 + h2 − q1 − q2| = {q1, q2}.

We take a blowing up µ : Ũ := Bℓq1,q2(U)→ U of the surface U at the two points {q1, q2} and put the

exceptional curve ej to be µ−1(qj) (j = 1, 2). Then we see that the linear system Λ̃ := |2µ∗h1 + 3µ∗h2 −
2e1 − 2e2| on the surface Ũ is base point free. Since (2µ∗h1 + 3µ∗h2 − 2e1 − 2e2)

2 = 12− 4× 2 = 5 > 0,

Bertini’s theorem gives a smooth irreducible member D̃0 ∈ Λ̃. Now we put D0 := µ∗(D̃0). Then the
divisor D0 is irreducible and reduced and has singularities only at the two points {q1, q2} as double

points. The normalization of the curve D0 coincides with the smooth curve D̃0, whose genus g̃ = g(D̃0)
is 0 by the reason that pa(D0) = 2 and the curve D0 has only two double points. Since D0 ⊂ U and
degD0 = 5 > 2, the curve D0 is obviously non-degenerate in P3(C).

Now we denote the line bundle on the surface U corresponding to the linear system |mh1 + nh2|
(m,n ∈ Z) by OU (m,n). Then, for a non-negative integer m, we have an exact sequence:

0→ OU (m− 2,m− 3)→ OU (m,m)→ OD0(m,m)→ 0,

which shows the arithmetic Cohen-Macaulayness of the curve D0 by using the fact H1(U,OU (m− 2,m−
3)) = 0 (m ∈ Z≥0) and the arithmetic Cohen-Macaulayness of the surface U ⊂ P3(C).
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Similar argument with replacing the linear system |2h1 + 3h2 − 2q1 − 2q2| by |2h1 + 3h2 − 2q1| and
by |2h1 + 3h2|, respectively, we obtain non-degenerate arithmetically Cohen-Macaulay curves D1, D2 ∈
|2h1 + 3h2| of degree 5 such that the curve D1 has only one double point at q1 and the curve D2 has no

singularity. Then, their normalizations D̃1 and D̃2 satisfies g(D̃1) = 1 and g(D̃2) = 2.

Let us give a birational classification of the non-degenerate projective surface of degree 5 in P4(C).

Theorem 2.2 Let V ⊆ P4(C) be a non-degenerate integral closed subscheme of dimension 2 with degree
5. Then the surface V is birational to a scroll over a curve C, or equivalently, to the product P1 × C,
where the curve C is of genus ≤ 2. Moreover, even if we assume that the surface V is arithmetically
Cohen-Macaulay, still we obtain the same results.

Proof. If the surface V is smooth, then we see that the surface V is birational to the product P1 × C
where the curve C is of genus ≤ 1 by the Ionescu’s work [8]. More precisely, as in [8], we can also
determine the biholomorphic structures in this case. Now we assume that the surface V has a singular
point {x0}. Then, as in Lemma 1.9, we consider the inner projection f : V − {x0} → Y ⊂ H ∼= P3(C).

If dimY < dimV , then, dimY = 1, deg f = 0, and by Lemma 1.9, we have e(OV,x0) = deg V = 5
and see that the surface V is a projective cone Conex0(Y ) over the curve Y with the vertex x0. Taking a
blowing up of the projective cone V = Conex0(Y ) at the point x0, we see that the surface V is birational
to the product P1 × Y . On the other hand, the curve Y ⊂ H ∼= P3(C) can be considered as the generic
hyperplane section of the surface V ⊂ P4(C), which implies the curve Y is a non-degenerate curve in
H ∼= P3(C) of degree 5. Set the curve C to be a normalization of the curve Y and apply Lemma 2.1, we
have an inequality on the genus of the curve C : g(C) ≤ 2 and a birational map between the surface V
and the product P1 × C.

Now we assume that dimY = dimV . Then, by Lemma 1.9, we have :

0 < deg f · degW = deg V − e(x0) ≤ 5− 2 = 3.

Using non-degeneracy of the surface V ⊆ P4(C), we obtain degW ≥ 2, which implies deg f = 1 or
equivalently the morphism f : V − {x0} → Y giving birational equivalence between the surface V and
the surface Y . From the inequality above, we have two cases: (i) e(x0) = 3 and deg Y = 2; (ii) e(x0) = 2
and deg Y = 3. In the first case (i), we get the birational equivalence between the surface V and the
product P1 × P1.

Let us consider the second case (ii). If the surface Y ⊆ H ∼= P3(C) is non-singular, then, by the
famous structure theorem on non-singular cubic surfaces (cf. [6] and its reference), the surface Y is a
blowing up at generic 6 points of the projective plane P2(C), which brings us the birational equivalence
between the surface V and the product P1 × P1.

Now, in the case (ii), we assume that the surface Y has a singular point x1. we take again an inner
projection h : Y − {x1} → Z ⊂ H ′ ∼= P2(C). By Lemma 1.9 again, we see :

deg h · degZ = deg Y − e(x1) ≤ 3− 2 = 1.

If dimZ < dimY , then deg h = 0, dimZ = 1 and Y = Conex1(Z). By the same argument above, we
get : the curve Z is a cubic curve in P2(C) ; the normalization C of the curve Z has the genus g(C) = 0, 1
; the surface V is birational to the product P1 × C.

The remaining case is dimZ = dimY = 2. Then, Z = H ′ ∼= P2(C) and deg h = 1, which means that
the morphism h : Y − {x1} → Z = P2(C) is birational, and therefore the surface V is birational to the
product P1 × P1.

To construct an arithmetically Cohen-Macaulay surface V of degree 5 which is birational to the
product P1 ×C with g(C) = 0, 1, 2, we have only to take a projective cone of the curve C constructed in
the proof of Lemma 2.1.
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Remark 2.3 It is also possible to analyze the biholomorphic structure of the surface V by following the
outline of the birational classification given above. This will be done in the forthcoming paper.

Theorem 2.4 Let X ⊆ P4(C) = P = Proj(S) be a trigonal canonical curve of genus 5, V ⊆ P a non-
degenerate integral closed subscheme of dimension 2 with degree 5 which contains the curve X. Assume
that the surface V has the sectional genus g(V,OV (1)) = 2 (cf. Remark 1.2) and is linearly normal,
namely h0(V,OV (1)) = 5. Then, the surface V is a homological shell of the curve X if and only if the
natural product map λ : H0(V,OV (1)) ⊗ H0(V, IX/V (2)) → H0(V, IX/V (3)) is surjective, where IX/V

denotes the sheaf of defining ideals of X on V .

Proof. First we assume that the surface V is a homological shell of the curve X. Then, by Theorem 1.6,
we see that the surface V is arithmetically Cohen-Macaulay, in particular H1(P, IV (m)) = 0 for m ∈ Z,
where IV denotes the sheaf of defining ideals of V in P . From the exact sequence of sheaves of ideals :
0→ IV → IX → IX/V → 0, we get an exact sequence for any m ∈ Z:

0→ H0(P, IV (m))→ H0(P, IX(m))→ H0(V, IX/V (m))→ 0.(#-1)

We put IV := ⊕mH0(P, IV (m)), IX := ⊕mH0(P, IX(m)) and IX/V := ⊕mH0(P, IX/V (m)), which can be
considered as finite graded S-modules. As we saw in Theorem 1.6, the homogeneous ideal IV is generated
minimally by 1 quadric equation and 2 cubic equations which form a part of minimal generators of the
homogeneous ideal IX , which is generated minimally by 3 quadric equations and 2 cubic equations. Then
the quotient graded S-module IX/V = IX/IV obviously generated by the part of degree 2, which means
that the natural product map λ : H0(V,OV (1))⊗H0(V, IX/V (2))→ H0(V, IX/V (3)) is surjective.

To show the converse direction, let us suppose the surjectivity of the natural product map λ. By
the assumption of the degree and the sectional genus of the surface V , the Hilbert polynomial of the
surface V has the form AV (m) = 5 · A2(m) − 6 · A1(m) + c, where c denotes a certain constant. Since
degOV (1) = 5 ≥ 2·∆(V,OV (1))+1 = 2(2+5−5)+1 = 5, by Theorem 1.7, the surface V is arithmetically
Cohen-Macaulay. By Bertini’s theorem, we can take a general hyperplane H ⊂ P4(C) = P such that
the curve Y = V ∩ H is irreducible and reduced, which is obviously arithmetically Cohen-Macaulay in
H ∼= P3(C) and may have singularities. Since the curve Y is a hyperplane cut of the surface V , the
Hilbert polynomial of the curve Y is AY (m) = AV (m)−AV (m− 1) = 5 ·A1(m)− 6 ·A0(m) = 5m− 1. In
particular, h0(OY )− h1(OY ) = AY (0) = −1 and therefore pa(Y ) = h1(OY ) = 2. As we said in Remark
1.3, now we can use fully the theory of singular curves in [7].

For a positive integer m, degOY (m) = 5m ≥ 2pa(Y )− 1 = 3, which implies that H1(Y,OY (m)) = 0
(m ∈ Z≥1). Hence, h0(OY (m)) = χ(OY (m)) = 5m − 1 for m ∈ Z≥1. Let us consider the sheaf of
ideals IY/H defining the curve Y as a space curve in H ∼= P3(C) = Proj(SH), where SH denotes a
polynomial ring of 4 variables over the field of complex numbers. Since the curve Y is arithmetically
Cohen-Macaulay, for a positive integer m, h0(IY/H(m)) = h0(OH(m))− h0(OY (m)) = A3(m)− 5m+ 1.
Thus, h0(IY/H(1)) = 0, h0(IY/H(2)) = 1, and h0(IY/H(3)) = 6, which shows h0(IY/H(3))−1·h0(OH(1)) =
6 − 4 = 2. Namely the homogeneous ideal IY/H = ⊕mH0(H, IY/H(m)) has 1 quadric equation and 2
cubic equations as a part of minimal generators over the polynomial ring SH . For integers k = 1, 2, 3,
an exact sequence 0 → IY/H(3 − k) → OH(3 − k) → OY (3 − k) → 0 gives exact sequences: 0 →
H1(IY/H(3− 1))→ H1(OH(3− 1)) = 0, 0 = H1(OY (3− 2))→ H2(IY/H(3− 2))→ H2(OH(3− 2)) = 0,
and 0 = H2(OY (3− 3))→ H3(IY/H(3− 3))→ H3(OH(3− 3)) = 0, which implies that the sheaf of ideals

IY/H is 3-regular, namely Hk(IY/H(3− k)) = 0 for k = 1, 2, 3. Then the homogeneous ideal IY/H has no
minimal generators whose degree is greater than 3. Since dimSH = 4 and the homogeneous coordinate
ring RY is arithmetically Cohen-Macaulay of dimension 2, we have a minimal graded SH -free resolution
of RY with length 2:
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0 ←−−−− RY ←−−−− SH ←−−−− SH(−2)1 ⊕ SH(−3)2 ←−−−− SH(−a)⊕ SH(−b) ←−−−− 0,

where a and b are integers with 4 ≤ a ≤ b. Here we use h0(OY (4)) = χ(OY (4)) = 5 × 4 − 1 = 19 and
get a = b = 4. Now we use that the homogeneous coordinate ring RV of the surface V is arithmetically
Cohen-Macaulay, we obtain a minimal graded S-free resolution of RV :

0 ←−−−− RV ←−−−− S ←−−−− S(−2)1 ⊕ S(−3)2 ←−−−− S(−4)2 ←−−−− 0.

Hence, to show that the surface V is a homological shell of the curve X, we have to check the injectivity
of the maps : µq : TorSq (RV , S/S+) → TorSq (RX , S/S+) only for the case q = 1, 2 (the case q = 0 is
trivial).

Using that the ring RV is arithmetically Cohen-Macaulay, we get again H1(P, IV (m)) = 0 for m ∈ Z
and the same exact sequence as in (#-1). Now we apply our assumption of the surjectivity of the map
λ. Then we see that the quotient graded S-module IX/V = IX/IV has no minimal generators of degree
3, which means that all the minimal generators of degree 3 in IV form a part of minimal generators of
IX . In other words, we obtain the injectivity of the map :

µ1 : TorS1 (RV , S/S+)→ TorS1 (RX , S/S+),

This observation brings an exact commutative diagram:

0 0 0x x x
0 ←−−−− IX/V

γ0←−−−− S(−2)2 γ1←−−−− Z(2)
X/V ←−−−− 0

g0

x g1

x xg2

0 ←−−−− IX
β0←−−−− S(−2)3 ⊕ S(−3)2 β1←−−−− Z(2)

X ←−−−− 0

f0

x f1

x xf2

0 ←−−−− IV ←−−−−
α0

S(−2)1 ⊕ S(−3)2 ←−−−−
α1

Z(2)
V = S(−4)2 ←−−−− 0x x x

0 0. 0

(#-2)

where Z(2)
♢ denotes the first syzygy module of the graded S-module I♢, respectively. We should make an

easy remark here that by taking the homomorphisms α0, β0, and γ0 suitably, we can suppose that the
homomorphism f1 is a natural (or “trivial”) inclusion as a direct factor and the homomorphism g1 is a
natural (or “trivial”) projection to a direct factor.

Our remaining problem is to show the injectivity of the map:

µ2 : TorS2 (RV , S/S+)→ TorS2 (RX , S/S+).

Let us assume that this map µ2 is not injective, namely there is a non zero element σ ∈ Ker[µ2]. Now

we study the structures of Tor-groups above. TorS2 (RV , S/S+) ∼= Z(2)
V ⊗ (S/S+) ∼= (S/S+)

⊕2
4 , which is

a 2-dimensional vector space over the residue field S/S+ concentrating at its degree 4 part. Thus the

element σ has a non zero homogeneous representative σ ∈ (Z(2)
V )4 with degree 4, which is a member
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of the minimal generators of the graded S-module Z(2)
V . To see the structure of TorS2 (RX , S/S+), let

us recall the minimal graded S-free resolution of the homogeneous coordinate ring RX of the trigonal
canonical curve X (cf. e.g.(#-14) and (#-15) in the later section). Then we have TorS2 (RX , S/S+) ∼=
Z(2)
X ⊗ (S/S+) ∼= (S(−4)⊕3 ⊕ S(−3)⊕2) ⊗ (S/S+) ∼= (S/S+)

⊕3
4 ⊕ (S/S+)

⊕2
3 and 0 = µ2(σ) = [f2(σ)] (

mod (S+)Z(2)
X ). Since σ ∈ (Z(2)

V )4, we get f2(σ) ∈ (Z(2)
X )4 ∩ ((S+)Z(2)

X ) = (S+)1 · (Z(2)
X )3. Then, there are

three elements τ1, τ2, τ3 ∈ (Z(2)
X )3 which form the minimal generators of the S-module Z(2)

X in degree 3
and three linear polynomials a1, a2, a3 ∈ (S+)1 such that f2(σ) = a1 · τ1 + a2 · τ2 + a3 · τ3. By observing
(#-14) and (#-15) precisely, the element f1 ◦ α1(σ) = β1 ◦ f2(σ) has no component in the part S(−3)2
of the module S(−2)3 ⊕ S(−3)2. By the reason that the homomorphism f1 is a natural inclusion of a
direct factor as we made a remark above, we can conclude that the element α1(σ) has no component
in the part S(−3)2 of the module S(−2)1 ⊕ S(−3)2. Since α1(σ) ̸= 0, there is a non zero homogeneous
equation Q ∈ S2 such that

α1(σ) =

 Q
0
0

 .

Let us describe the homomorphism α0 by 1 × 3-matrix [G,H1,H2] where G ∈ S2 and H1,H2 ∈ S3 and
{G,H1,H2} form a minimal generators of IV . Then, 0 = α0 ◦ α1(σ) = G ·Q, which is a contradiction.

§3 Geometric Construction

In this section, we construct a homological shell surface of degree 5 in P4(C) by using geometric approach,
which is first suggested by Prof. A. Ohbuchi and improved by us for calculating syzygies (cf. Remark
3.8). We throughout use the notation in the proof of Lemma 2.1 such as U = P1×P1, and the ones in [6]
such as |ah1+bh2−p| for a point p ∈ U which corresponds to the vector space H0(U, I{p}/U⊗OU (a, b)) ⊂
H0(U,OU (a, b)) given by the sheaf of ideals I{p}/U defining the point p on the surface U .

First, based on the fact that dim |ah1 + bh2| = ab + a + b (a, b ∈ Z≥0), we define a concept on the
position of points in the surface U as follows, which is a imitation of the similar classical one in Projective
Geometry.

Definition 3.1 Suppose that n points {p1, . . . , pn} on the surface U = P1 × P1 are given. Then we say
that the n points {p1, . . . pn} are in multi-general position, if they satisfy the two conditions : (1) for any
a, b ∈ Z≥0 with ab+ a+ b ≤ n and for ab+ a+ b points chosen arbitrarily from the n points {p1, . . . pn},
an effective divisor D ∈ |ah1 + bh2| which passes through all these ab + a + b points is unique, ; (2) for
any a, b ∈ Z≥0 with ab+ a+ b+ 1 ≤ n and for ab+ a+ b+ 1 points chosen arbitrarily from the n points
{p1, . . . pn}, there is no effective divisor D ∈ |ah1 + bh2| which passes through all these ab + a + b + 1
points.

Remark 3.2 Take an effective divisor D ∈ |ah1 + bh2| (a, b ∈ Z≥0). Suppose that the divisor D is
reducible and decompose into a union of effective divisors D = D′ ∪ D′′ or into a sum of effective
divisors D = D′ + D′′. Then there are integers a′, a′′, b′, b′′ ∈ Z≥0 with a = a′ + a′′ and b = b′ + b′′

such that D′ ∈ |a′h1 + b′h2| and D′′ ∈ |a′′h1 + b′′h2|. Hence, by taking a suitable number of points
in multi-general position, we can control the irreducibility of effective divisors passing through the given
points. For example, take 3 points {p1, p2, p3} in multi-general position and consider an effective divisor

D0 ∈ |h1 + h2 −
∑3

i=1 pi|. Then, it is very easy to show that the divisor D0 is irreducible.
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Lemma 3.3 For an integer n with 0 ≤ n ≤ 8, if we once get n points {p1, . . . , pn} in multi-general
position on the surface U = P1 × P1, then, by taking 8 − n points generically on U , we can make the 8
points {p1, . . . , p8} be in multi-general position. In particular, there exist 8 points in multi-general points.

Proof. Let us translate the condition of multi-general position into a more explicit condition to be handled
easily in each case of n. First we solve an equation : n = ab+a+b with the condition: 8 ≥ n ≥ 0, a ≥ b ≥ 0,
n, a, b ∈ Z. Then we have solutions: (n, a, b) = (0, 0, 0), (1, 1, 0), (2, 2, 0), (3, 3, 0), (3, 1, 1), (4, 4, 0), (5, 5, 0),
(5, 2, 1), (6, 6, 0), (7, 7, 0), (7, 3, 1), (8, 8, 0), (8, 2, 2). Once we have n points {p1, . . . , pn} in multi-general
position, the uniqueness of the divisor D ∈ |nhk −

∑n
i=1 pi| (k = 1, 2) as one of the conditions for

multi-general position require that prk(p1), . . . , prk(pn) ∈ P1 (k = 1, 2) are distinct, which will be called
“obvious condition” for multi-general position.

If 3 ≥ n ≥ 0, then this obvious condition implies the conditions of multi-general position conversely.
In fact, if D ∈ |h1 + h2 −

∑3
i=1 pi|, the obvious condition implies the irreducibility of D. Then, this

irreducibility and the facts : (h1 + h2)
2 = 2 and p1, p2, p3 ∈ D show the uniqueness of the divisor in

|h1 + h2 −
∑3

i=1 pi|.
Hence, for the cases: 8 ≥ n ≥ 4, the condition of multi-general position requires an additional

condition that the points {pj(1), . . . , pj(n−3)} are outside of the unique divisor in |h1 + h2 −
∑3

k=1 pi(k)|
where {1, 2, . . . , n} = {i(1), i(2), i(3)} ∪ {j(1), . . . , j(n− 3)} denotes an arbitrary division.

On the assumptions of obvious condition and of the additional condition for the cases 8 ≥ n ≥ 4, if
n = 5, then the similar argument to the case of |h1+h2| shows that the irreducibility and the uniqueness

of a divisor in |2h1+h2−
∑5

i=1 pi| or in |h1+2h2−
∑5

i=1 pi|. Thus for the cases 8 ≥ n ≥ 6, the condition
of multi-general position requires another additional condition that the points {pj(1), . . . , pj(n−5)} are

outside of the unique divisor in |2h1+h2−
∑5

k=1 pi(k)| or in |h1+2h2−
∑5

k=1 pi(k)| where {1, 2, . . . , n} =
{i(1), . . . , i(5)} ∪ {j(1), . . . , j(n− 5)} denotes an arbitrary division.

On the assumptions of obvious condition and of the two additional conditions for the cases 8 ≥ n ≥ 4
and for the cases 8 ≥ n ≥ 6, if n = 7, then the similar argument to the case of |h1 + h2| shows that the
irreducibility and the uniqueness of a divisor in |3h1 +h2−

∑7
i=1 pi| or in |h1 +3h2−

∑7
i=1 pi|. Hence, if

0 ≤ n ≤ 7, the condition of multi-general position is equivalent to the assembly of the obvious conditions
and two additional conditions.

Thus we can prove step by step our claim in Lemma 3.3 except the case n = 8. The first point p1 can
be chosen arbitrarily. Once we obtain the first point p1, it is enough to choose the second point p2 outside
the closed set Y1 := pr−1

1 ◦ pr1(p1) ∪ pr−1
2 ◦ pr2(p1). When we have two points {p1, p2} in multi-general

position, we have only to choose the third point p3 outside the closed set Y2 := ∪i,jpr−1
i ◦pri(pj) (i = 1, 2

and j = 1, 2). Suppose that three points {p1, p2, p3} in multi-general position are given. Then, we have
only to choose the fourth poit p4 outside the closed set D1 ∪ Y3 where Y3 := ∪i,jpr−1

i ◦ pri(pj) (i = 1, 2

and j = 1, 2, 3) and D1 denotes the unique divisor in |h1 + h2 −
∑3

i=1 pi|. Assume that four points
{p1, . . . , p4} in multi-general position are given. Then, the fifth point p5 has to be chosen outside the
closed set D2 ∪ Y4 where Y4 := ∪i,jpr−1

i ◦ pri(pj) (i = 1, 2 and j = 1, . . . , 4) and D2 denotes the union
∪D2(i(1), i(2), i(3)) ({1, 2, 3, 4} = {i(1), i(2), i(3)} ∪ {j(1)} arbitrary division of the set ) of the unique

divisor D2(i(1), i(2), i(3)) ∈ |h1+h2−
∑3

k=1 pi(k)|. Continuing the similar argument, we obtain our claim
except for the case n = 8. Before we proceed to the case n = 8, we have to show the next Lemma 3.4 for
the case a = 1, 2. Then, based on Lemma 3.4 for the case a = 1, 2, we can prove Lemma 3.5.

Let us consider the case n = 8. The condition of multi-general position requires at least one more
condition that the point {pj(1)} is outside of the unique divisor in |3h1 + h2 −

∑7
k=1 pi(k)| or in |h1 +

3h2 −
∑7

k=1 pi(k)| where {1, 2, . . . , 8} = {i(1), . . . , i(7)} ∪ {j(1)} denotes an arbitrary division. However,
this is not enough to get conversely the condition of multi-general position. Now we assume that 7 points
{p1, . . . , p7} in multi-general position are given. Then, by Lemma 3.5, we see that dim |2h1 + 2h2 −∑7

i=1 pi| = 1 and this linear system has one unassigned base point q, namely Bs(|2h1+2h2−
∑7

i=1 pi|) =
{p1, . . . , p7, q}. Thus, to choose the 8-th point p8, we have to take it not only outside of the divisors
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coming from the obvious condition and three additional conditions but also avoiding the unassigned base
point q. Finally we make a remark that based on these fact we get Lemma 3.4 also for the case a = 3.

Lemma 3.4 For an integer with a = 1, 2, 3, suppose that 2a points {p1, . . . , p2a} on the surface U =

P1×P1 in multi-general position are given. Then the linear system |ah1+h2−
∑2a

i=1 pi| has no unassigned

base point, namely the base locus of the linear system is exactly Bs|ah1 + h2 −
∑2a

i=1 pi| = {p1, . . . , p2a}.
The similar result also holds for the linear system |h1 + ah2 −

∑2a
i=1 pi| or for the case that the point p2

is an infinitely near point of the point p1.

Proof. The point to be considered is that a member of |ah1 + h2 −
∑2a

i=1 pi| is not always irreducible.
By Lemma 3.3, let us take two points p2a+1 and p2a+2 of the surface U such that the 2a + 2 points
{p1, . . . , p2a+2} are in multi-general position. Then, by the definition of multi-general position, for 2a+1

points {pi(1), . . . , pi(2a+1)} arbitrarily chosen from {p1, . . . , p2a+2}, dim |ah1 + h2 −
∑2a+1

j=1 pi(j)| = 0 and

the unique effective divisor D ∈ |ah1 + h2 −
∑2a+1

j=1 pi(j)| is obviously irreducible. Hence dim |ah1 + h2 −∑2a
i=1 pi| = 1. Let us take two members D1 ∈ |ah1 + h2− p2a+1−

∑2a
i=1 pi| and D2 ∈ |ah1 + h2− p2a+2−∑2a

i=1 pi|. Then obviously D1 ̸= D2 and they form a basis of the linear system |ah1 + h2 −
∑2a

i=1 pi|.
The divisors D1 and D2 are irreducible, {p1, . . . , p2a} ⊆ D1 ∩D2, and D1.D2 = (ah1 + h2)

2 = 2a. Thus

Bs|ah1 + h2 −
∑2a

i=1 pi| = D1 ∩D2 = {p1, . . . , p2a}.

Lemma 3.5 Assume that on the surface U = P1 × P1, given 6 points {p1, . . . , p6} are in multi-general

position. Then the linear system |2h1 + 2h2 −
∑6

i=1 pi| has no unassigned base point. In particular,

dim |2h1 + 2h2 −
∑6

i=1 pi| = 2.

Proof. By the definition of multi-general position, for 3 points {pi(1), pi(2), pi(3)} arbitrarily chosen from
{p1, . . . , p6}, dim |h1+h2− pi(1)− pi(2)− pi(3)| = 0 and the unique effective divisor C ∈ |h1+h2− pi(1)−
pi(2) − pi(3)| is irreducible. Let us denote this divisor C as C(i(1), i(2), i(3)). Now we take 4 divisors in

|2h1 + 2h2 −
∑6

i=1 pi| as follows.

D1 := C ′
1 + C ′′

1 ; C ′
1 := C(1, 2, 3) C ′′

1 := C(4, 5, 6)
D2 := C ′

2 + C ′′
2 ; C ′

2 := C(1, 2, 4) C ′′
2 := C(3, 5, 6)

D3 := C ′
3 + C ′′

3 ; C ′
3 := C(1, 2, 5) C ′′

3 := C(3, 4, 6)
D4 := C ′

4 + C ′′
4 ; C ′

4 := C(1, 2, 6) C ′′
4 := C(3, 4, 5)

Since {p1, . . . , p6} ⊆ Bs|2h1 +2h2−
∑6

i=1 pi| ⊆ D1 ∩D2 ∩D3 ∩D4, it is enough to show that D1 ∩D2 ∩
D3 ∩D4 = {p1, . . . , p6}.

Let us assume that D1 ∩D2 ∩D3 ∩D4 ⊇ {p1, . . . , p6, q}. It is easy to see that {C ′
i, C

′′
i |i = 1, 2, 3, 4}

are distinct 8 curves and #(C ′
i ∩ C ′

j) = #(C ′′
i ∩ C ′′

j ) = #(C ′
i ∩ C ′′

j ) = 2 for i ̸= j by the reason that

(h1 + h2)
2 = 2. Then, for i ̸= j, obviously C ′

i ∩ C ′
j = {p1, p2}, and C ′′

i ∩ C ′′
j ⊂ {p3, . . . , p6}. Since for

i ̸= j, Di ∩Dj ⊇ {p1, . . . , p6, q} and Di ∩Dj = (C ′
i ∩ C ′

j) ∪ (C ′′
i ∩ C ′′

j ) ∪ (C ′
i ∩ C ′′

j ) ∪ (C ′
j ∩ C ′′

i ), the set
(C ′

i ∩ C ′′
j ) or the set (C ′

j ∩ C ′′
i ) includes the point q. Let us list up all the cases in the following table.
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Cases C ′
i ∩ C ′′

j C ′
j ∩ C ′′

i

(i,j)=(1,2) p3, s1 p4, t1
(1,3) p3, s2 p5, t2
(1,4) p3, s3 p6, t3
(2,3) p4, s4 p5, t4
(2,4) p4, s5 p6, t5
(3,4) p5, s6 p6, t6

Table 1: Intersection Points (I)

Then for each k = 1, . . . 6, sk or tk has to be the point q. On the other hand, the case pℓ, q does not
appear in Table 1 more than once. In fact, if (i1, j1) ̸= (i2, j2) and C ′

i1
∩ C ′′

j1
= C ′

i2
∩ C ′′

j2
= {pℓ, q}, then

q ∈ C ′
i1
∩ C ′

i2
and q ∈ C ′′

j1
∩ C ′′

j2
. Since (i1, j1) ̸= (i2, j2), we have i1 ̸= i2 or j1 ̸= j2. Then we see that

#C ′
i ∩ C ′

j ≥ 3 or #C ′′
i ∩ C ′′

j ≥ 3 for i ̸= j, which is a contradiction.
Let us start form the case s1 = q. Then t2 = t3 = s4 = q and therefore s5 ̸= q and t5 ̸= q. This is

a contradiction. The remaining case is t1 = q. Then t4 = t5 = s2 = q and therefore s3 ̸= q and t3 ̸= q.
This is also a contradiction.

Lemma 3.6 Take 7 points Z := {p1, . . . , p7} in multi-general position on the surface U = P1 × P1. Set
ρ : V := BℓZ(U)→ U to be a blowing up of the surface U at the center Z and the exceptional curve ei to

be ρ−1(pi) (i = 1, 2, . . . , 7). Then, the linear system |2ρ∗h1 + 3ρ∗h2 −
∑7

i=1 ei| on the surface V is very
ample, which embeds V as the surface of degree 5.

Proof. For integers : a, b ∈ Z≥0, 1 ≤ k(1) < k(2) < · · · < k(t) ≤ 7 and a point p on the surface
U = P1 × P1 with including a infinitely near point, we put the linear systems:

Λ((a, b); k(1), k(2), · · · , k(t)) := |ah1 + bh2 −
∑t

j=1 pk(j)|
Λ((a, b); k(1), k(2), · · · , k(t); p) := |ah1 + bh2 − p−

∑t
j=1 pk(j)|.

By using the similar argument to the one for the cubic surfaces in [6], not on the surface V but
on the surface U , set Λ := Λ((2, 3); 1, · · · , 7), we have only to show that, on the set of base points of
linear systems, BsΛ = Z, and for any point p ∈ U with including a infinitely near point, Bs(Λ − p) =
Z ∪ {p}, where Λ − p denotes simply the linear system Λ((2, 3); 1, · · · , 7; p). Since obviously BsΛ ⊇ Z
and Bs(Λ− p) ⊇ Z ∪ {p}, it is enough to show the inclusions in the converse direction.

(i) Let us show that BsΛ ⊆ Z. For j = 1, · · · , 7, take an effective divisor L(j) ∈ |h2 − pj |. Then we get

L(j) + Λ((2, 2); 1, · · · j
⌣ · · · , 7) ⊆ Λ. By Lemma 3.5, Bs(Λ((2, 2); 1, · · · j

⌣ · · · , 7)) = {p1, · · ·
j
⌣ · · · , p7},

we have L(j) ∪ {p1, · · ·
j
⌣ · · · , p7} = Bs(L(j) + Λ((2, 2); 1, · · · j

⌣ · · · , 7) ⊇ Bs(Λ). Hence we obtain

Z = {p1, · · · , p7} =
7∩

j=1

(L(j) ∪ {p1, · · ·
j
⌣ · · · , p7}) ⊇ Bs(Λ)

(ii) Now we show that Bs(Λ−p) ⊆ Z∪{p} for any point p ∈ U with including a infinitely near point. By
the fact dim |2h1+2h2| = 8, we can take an effective divisor C0 ∈ Λ((2, 2); 1, · · · , 7; p). By the reason that
the points {p1, . . . , p7} are in multi-general position, and p1, . . . , p7 ∈ C0, the divisor C0 is irreducible.
Using Bs|h2| = ϕ and C0 + |h2| ⊆ Λ− p, we see that Bs(Λ− p) ⊆ Bs(C0 + |h2|) = C0. Let us divide this
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case into the following three cases.

(ii-a) Suppose that Λ((1, 0); 1; p) ̸= ϕ. Take an effective divisor L1 ∈ Λ((1, 0); 1; p). Then L1 +
Λ((1, 3); 2, · · · , 7) ⊆ Λ−p, which implies that L1∪{p2, · · · p7} = Bs(L1+Λ((1, 3); 2, · · · , 7)) ⊇ Bs(Λ−p)
by applying Lemma 3.4. Then we see that Z ∪ {p} = C0 ∩ (L1 ∪ {p2, · · · p7}) ⊇ Bs(Λ− p).

(ii-b) Assume that Λ((0, 1); 1; p) ̸= ϕ. Pick an effective divisor L2 ∈ Λ((0, 1); 1; p). Then L2 +
Λ((2, 2); 2, · · · , 7) ⊆ Λ−p, which implies that L2∪{p2, · · · p7} = Bs(L2+Λ((2, 2); 2, · · · , 7)) ⊇ Bs(Λ−p)
by applying Lemma 3.5. Hence we have Z ∪ {p} = C0 ∩ (L2 ∪ {p2, · · · p7}) ⊇ Bs(Λ− p).

(ii-c) In this remaining case, we can assume that Λ((1, 0); 1; p) = ϕ.and Λ((0, 1); 1; p) = ϕ. Hence we see
that any effective divisor in Λ((1, 1); 1; p) is irreducible. To show Z ∪ {p} ⊇ Bs(Λ − p), we assume that
there is a point x such that Z ∪ {p, x} ⊆ Bs(Λ− p) and deduce the contradiction from this assumption.

Let us divide the set {2, . . . , 7} into two disjoint sets {i(1), i(2), . . . i(5)} and {k}, and take effective
divisors C1(i(1), i(2), . . . i(5)) ∈ Λ((1, 2) : i(1), i(2), . . . i(5)) and C ′

1(k) ∈ Λ((1, 1); 1, k; p). Since the
points {pk(1), . . . , pk(5)} are in multi-general position, the divisor C1(i(1), i(2), . . . i(5)) is also irreducible.
Moreover, C1(i(1), i(2), . . . i(5)) + C ′

1(k) ∈ Λ − p. For integers j = 2, · · · , 7, we take 6 effective divisors
Dj = Fj + F ′

j ∈ Λ− p as follows.

F2 := C1(3, 4, 5, 6, 7), F ′
2 := C ′

1(2)
F3 := C1(2, 4, 5, 6, 7), F ′

3 := C ′
1(3)

F4 := C1(2, 3, 5, 6, 7), F ′
4 := C ′

1(4)
F5 := C1(2, 3, 4, 6, 7), F ′

5 := C ′
1(5)

F6 := C1(2, 3, 4, 5, 7), F ′
6 := C ′

1(6)
F7 := C1(2, 3, 4, 5, 6), F ′

7 := C ′
1(7)

By using the irreducibility of the divisors C0, Fj and F ′
j and the intersection numbers C0 · Fj = 6 and

C0 · F ′
j = 4, we obtain the following table of intersection points.

Cases C0 ∩ Fj C0 ∩ F ′
j

D2 p3, p4, p5, p6, p7, u2 p1, p, p2, v2
D3 p2, p4, p5, p6, p7, u3 p1, p, p3, v3
D4 p2, p3, p5, p6, p7, u4 p1, p, p4, v4
D5 p2, p3, p4, p6, p7, u5 p1, p, p5, v5
D6 p2, p3, p4, p5, p7, u6 p1, p, p6, v6
D7 p2, p3, p4, p5, p6, u7 p1, p, p7, v7

Table 2: Intersection Points (II)

By the fact Dj ∩ C0 ⊇ Bs(Λ − p) ⊇ Z ∪ {p, x}, we see that uj = x or vj = x for any j = 2, · · · , 7.
On the other hand, for 2 ≤ i < j ≤ 7, if we have ui = uj = x, then Fi = Fj since the divisors

Fi and Fj are irreducible, Fi · Fj = 4 and Fi ∩ Fj ⊇ {p2 · · ·
i
⌣ · · · j

⌣ · · · p7, x}, which implies that
Fi = Fj ⊇ {p2, · · · p7}. This is a contradiction because 6 points in multi-general position are on the
effective divisor Fi = Fj ∈ |h1 +2h2|. Thus we see that at least 5 points among the 6 points {v2, · · · , v7}
coincide with the point x. By change the numbering of the points {p2, · · · , p7}, we may assume that
v3 = v4 = · · · = v7 = x. Then, for 3 ≤ i < j ≤ 7, F ′

i = F ′
j since the divisors F ′

i and F ′
j are irreducible,

F ′
i ·F ′

j = 2 and F ′
i ∩F ′

j ⊇ {p1, p, x}. Hence we get F ′
3 = · · · = F ′

7 ⊇ {p3, · · · p7}. This is also a contradiction
because 5 points in multi-general position are on an effective divisor in |h1 + h2|.
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Based on these preparation above, let us construct a pair of a trigonal canonical curve X and a
homological shell surface V with degree 5 of the curve X in P4(C).

Theorem 3.7 Suppose the same situation as in Lemma 3.6 above. Take a non-singular curve C ∈
|4h1 + 5h2 −

∑7
i=1 2 · ei| suitably on the surface V . Then we have the following two facts.

(3.7.1) The curve C is trigonal and of genus 5. The trace Λ|C of the linear system Λ on the curve C is
complete and coincides with the canonical linear system |KC |.

(3.7.2) Embed the surface V and the curve C by the linear system Λ, then the curve C is a trigonal
canonical curve X and the embedded surface V is a non-singular homological shell of the curve
X and of degree 5.

Proof. First we consider the linear system |2h1 + 2h2 −
∑7

i=1 pi| on the surface U . Then this linear

system |2h1 + 2h2 −
∑7

i=1 pi| forms a pencil by Lemma 3.5, which has only one unassigned base point
p0, which might be an infinitely near point to one of the 7 points Z = {p1, . . . , p7}. In any case, we can
consider the point p0 is on the surface V .

Now we take a blowing up σ : Ṽ := Bℓp0(V ) → V at the center p0 and set e0 := σ−1(p0). Then,

obviously the linear system |2h1 + 2h2 − e0 −
∑7

i=1 ei| on the surface Ṽ is a pencil without base point.

By Lemma 3.6, the linear system |2h1 + 3h2 −
∑7

i=1 ei| is very ample on the surface V , and therefore its

pullback to the surface Ṽ is base point free. Thus we have a base point free linear system |4h1+5h2−e0−∑7
i=1 2·ei| on the surface Ṽ , whose self intersection is (4h1+5h2−e0−

∑7
i=1 2·ei)2 = 40−1−2×7 = 25 > 0.

By Bertini’s theorem, we obtain a non-singular irreducible curve C̃ ∈ |4h1 + 5h2 − e0 −
∑7

i=1 2 · ei| on
the surface Ṽ .

Since the intersection number C̃ · e0 = 1, the curve C := σ(C̃) is also a non-singular irreducible curve

passing simply the point p0 on the surface V and is a member of the linear system |4h1 +5h2− (
∑7

i=1 2 ·
ei)− p0|. Obviously the curve C̃ is the strict transform of the curve C and is isomorphic to the curve C
via the morphism σ.

Now let us consider the trace of the base point free pencil |2h1 + 2h2 − e0 −
∑7

i=1 ei| on the surface

Ṽ to the curve C̃. Then its degree is (2h1 + 2h2 − e0 −
∑7

i=1 ei).C̃ = (2h1 + 2h2 − e0 −
∑7

i=1 ei).(4h1 +

5h2 − e0 −
∑7

i=1 2 · ei) = 18− 1− 2× 7 = 3, which shows that the curve C is trigonal.

By using adjunction formula, we have 2g(C̃) − 2 = (K
Ṽ
+ C̃).C̃ = ((−2h1 − 2h2 + e0 +

∑7
i=1 ei) +

(4h1 + 5h2 − e0 −
∑7

i=1 2 · ei)).(4h1 + 5h2 − e0 −
∑7

i=1 2 · ei) = −3 + 40 − 1 − 4 × 7 = 8, and therefore

g(C) = g(C̃) = 5.

Now we consider the dimension of the linear system Λ = |2h1 + 3h2 −
∑7

i=1 ei|. It is easy to see
that dimΛ ≥ 11 − 7 = 4. Take an effective divisor H ∈ Λ and consider an exact sequence : 0 →
OV (H −C)→ OV (H)→ OC(H|C)→ 0. Then we have a linear equivalence of divisors on the surface V

: KV + C ∼ (−2h1 − 2h2 +
∑7

i=1 ei) + (4h1 + 5h2 −
∑7

i=1 2 · ei)) ∼ H, which brings an exact sequence:
0 → OV (KV ) → OV (H) → OC(KC) → 0 and its induced exact sequence : 0 → H0(V,OV (KV )) →
H0(V,OV (H)) → H0(C,OC(KC)). By birational invariance of the geometric genus, h0(V,OV (KV )) =
pg(V ) = pg(U) = 0, which implies that h0(V,OV (H)) ≤ h0(C,OC(KC)) = 5 and therefore 4 ≤ dimΛ =
h0(V,OV (H)) − 1 ≤ h0(C,OC(KC)) − 1 = 5 − 1, namely dimΛ = 4 and Λ|C = |KC |. Hence we see the
claim (3.7.1) holds and that the very ample linear system Λ gives an embedding of the surface V into
P4(C) as a surface of degree 5, whose restriction to the curve C coincides with its canonical embedding.

To get the claim (3.7.2), we have only to show that the embedded surface V is a homological shell of
the canonical curve C ∼= X ⊂ P4(C).

Let us recall Theorem 2.4 and check all the conditions for being homological shell. Take a smooth
irreducible member H ∈ Λ. Then, the sectional genus g(V,OV (H)) = g(H). By adjunction formula,
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2g(H)− 2 = (KV +H).H = ((−2h1 − 2h2 +
∑7

i=1 ei) + (2h1 + 3h2 −
∑7

i=1 ei)).(2h1 + 3h2 −
∑7

i=1 ei) =

h2.(2h1 + 3h2 −
∑7

i=1 ei) = 2, we get g(V,OV (H)) = g(H) = 2.
The remaining condition to be confirmed is that the map λ : H0(V,OV (1)) ⊗ H0(V, IX/V (2)) →

H0(V, IX/V (3)) is surjective. Since IX/V = OV (−C), we have an isomorphism of sheaves: IX/V (2) ∼=
OV (2H −C) ∼= OV (h2). Now we consider the composition of the morphisms τ := pr2 ◦ ρ : V → U → P1.
Then, all the global sections in H0(V, IX/V (2)) = H0(V,OV (h2)) come from H0(P1, OP1(1)) on the second
factor of the product space U . Pulling back the Euler sequence on the second factor P1 by the morphism
τ and by the morphism pr2 : U → P1, we have two short exact sequences as we will see precisely in the
sequel.

The first short exact sequence obtained by τ is 0→ OV (−h2)→ H0(V,OV (h2))⊗OV → OV (h2)→ 0.
Let us tensor the line bundle OV (H) to this sequence and get

0 −−−−→ OV (H − h2) −−−−→ H0(V, IX/V (2))⊗OV (H) −−−−→ OV (H + h2) −−−−→ 0.
(#-3)

Take its cohomology long exact sequence, we obtain the desired map λ.

H0(V, IX/V (2))⊗H0(V,OV (1))
λ−−−−→ H0(V, IX/V (3)) −−−−→ H1(V,OV (H − h2)).

(#-4)

Thus, it is enough to show the exactness of the H0 part of the short sequence (#-3).
Let us consider the second short exact sequence obtained by pr2. Tensor the sheaf of ideals IZ/U (2h1+

3h2) defining the 7 points Z = {p1, . . . , p7} to this short exact sequence of vector bundles. Then, we
obtain the sequence :

0 −−−−→ IZ(2h1 + 2h2) −−−−→ ⊕2IZ(2h1 + 3h2) −−−−→ IZ(2h1 + 4h2) −−−−→ 0,
(#-5)

which obviously coincides with the sequence induced by taking direct image of the sequence (#-3) through
the morphism ρ.

Hence, it is enough to see that the exactness of the H0 part of the short sequence (#-5). Now we see
that the sheaf OZ is a skyscraper sheaf ⊕7

i=1C(pi) with support on the given 7 points. By applying Lemma
3.5, for an integer b ≥ 2, if we choose any 6 points in Z, then there is a section s ∈ H0(U,OU (2h1+ bh2))
such that it vanishes on the chosen 6 points in Z and does not vanish on the remaining one point of Z,
which brings an exact sequence:

0 −−−−→ H0(IZ(2h1 + bh2)) −−−−→ H0(OU (2h1 + bh2)) −−−−→ H0(OZ(2h1 + bh2)) −−−−→ 0.
(#-6)

By using H1(OU (2h1 + 2h2)) = 0, we have an exact commutative diagram:
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0 0 0x x x
0 −−−−→ H0(OZ(2h1 + 2h2)) −−−−→ ⊕2H0(OZ(2h1 + 3h2)) −−−−→ H0(OZ(2h1 + 4h2)) −−−−→ 0x x x
0 −−−−→ H0(OU (2h1 + 2h2)) −−−−→ ⊕2H0(OU (2h1 + 3h2)) −−−−→ H0(OU (2h1 + 4h2)) −−−−→ 0x x x
0 −−−−→ H0(IZ(2h1 + 2h2)) −−−−→ ⊕2H0(IZ(2h1 + 3h2)) −−−−→

λ
H0(OZ(2h1 + bh2)).x x x

0 0 0

(#-7)

By Snake lemma, we can conclude the surjectivity of the map λ.

At the end of this section, we make a brief historical remark on the surfaces constructed here and so
on.

Remark 3.8 The surfaces V constructed in Lemma 3.6 are the same as the surfaces called classically as
Castelnuovo surfaces (cf. [12]). These surfaces are given as the images of the projective plane P2(C) by
rational maps, which are composed of blow-ups, non-isomorphic morphisms and projective embeddings.
These non-isomorphic morphisms might cause the difficulty in the fine calculation on syzygies. On the
other hand, Prof. A. Ohbuchi kindly showed the author that there are trigonal canonical curves on
these Castelnuovo surfaces. However, these facts are still far from showing the existence of homological
shells of ∆-genera 2, namely to see the global Tor injectivity condition. Thus we need to analyze the non-
isomorphic morphisms carefully and show that they are only blow-downs and the images of the morphisms
are smooth in our construction. Then we see that it is enough to start not from the projective plane P2(C)
but from the surface P1 × P1. The author guesses that Lemma 3.4, Lemma 3.5, and Lemma 3.6 are not
new essentially and are known classically for the points chosen generically. But he could not find any
appropriate reference which describes the position of points precisely such as “in multi-general position”.
Since we have to apply Lemma 3.5 for fixed 6 points in the proof of Theorem 3.7, we need a precise
description on the position of points as in Definition 3.1. This is the reason why we add three lemmas
including proves here.

§4 Algebraic Construction

To clarify the motivation of this algebraic construction of a homological shell surface of ∆-genus 2, let
us review our explicit minimal free resolutions for g = 5 trigonal canonical curves which is a little bit of
refinement of the ones given in [11]. This is also a typical example for the structure theorem in [3] on the
minimal free resolutions in the case of codimension 3 and Gorenstein.

Since the trigonal curve X of genus 5 is contained by a unique rational ruled surface V0 of degree 3
in P4(C) (or equivalently ∆(V0, OV0(1)) = 0), we first fix the embedding of the surface V0 in P4(C) = P
as follows.
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Taking B = P2(C) = Proj(C[U0, U1, U2]), we get the surface V0 by blowing up the plane B at the
center p0 = [1 : 0 : 0]. The embedding of V0 by the linear system |2ξ + E1|, namely the linear system
coming from the conics passing through the point p0, is given by [Z0 : Z1 : Z2 : Z3 : Z4] = [U0U1 :
U0U2 : U2

1 : U1U2 : U2
2 ]. The equations of V0 are : G1 = Z0Z3 − Z1Z2 = 0, G2 = Z1Z3 − Z0Z4 = 0,

G3 = Z2Z4 − Z2
3 = 0. When we take a 2× 3-matrix :

Φ =

[
Z4 Z3 Z1

Z3 Z2 Z0

]
,(#-8)

those equations G1, G2, G3 can be considered as G1 = φ2,3, G2 = −φ1,3, G3 = φ1,2, where the
determinant of 2× 2-minor matrix made by choosing i, j columns of Φ is denoted by φi,j . The curve X
arises from the blowing up at the center p0 of the plane curve C0 of degree 5 which is smooth outside the
point p0 and has only one double point at the point p0. An equation F̂0 of the plane curve C0 is written
by

F̂0 = U3
0 {a1U2

1 + a2U1U2 + a3U
2
2 }+

∑
3≤e1+e2≤5

ce1,e2U
5−e1−e2
0 Ue1

1 Ue2
2 ,(#-9)

where (a1, a2, a3) ̸= (0, 0, 0) and the coefficients ai, ce1,e2 are constants.

Let us consider the following 3 polynomials F̂0,1, F̂0,2, and F̂0,3.

F̂0,1 = c0,5U
4
2(#-10)

F̂0,2 = −
∑

e1+e2=5, e1≥1

ce1,e2U
e1−1
1 Ue2

2

F̂0,3 = U2
0 {a1U2

1 + a2U1U2 + a3U
2
2 }+

∑
3≤e1+e2≤4

ce1,e2U
4−e1−e2
0 Ue1

1 Ue2
2

Then we see that F̂0 = U0F̂0,3 − U1F̂0,2 + U2F̂0,1. From these 3 homogeneous polynomials of degree 4

; F̂0,1, F̂0,2, F̂0,3, we construct 3 homogeneous polynomials Q1, Q2, Q3 of degree 2 with the variables
Z0, · · ·Z4 by replacing U0U1, U0U2, U

2
1 , U1U2, U

2
2 by Z0, Z1, Z2, Z3, Z4, respectively. Namely,

Q1(Z4) = c0,5Z
2
4(#-11)

Q2(Z2, Z3, Z4) = −(c5,0Z2
2 + c4,1Z2Z3 + c3,2Z

2
3 + c2,3Z3Z4 + c1,4Z

2
4 )

Q3(Z0, Z1, Z2, Z3, Z4) = a1Z
2
0 + a2Z0Z1 + a3Z

2
1

+ c3,0Z0Z2 + c2,1Z0Z3 + c1,2Z1Z3 + c0,3Z1Z4

+ c4,0Z
2
2 + c3,1Z2Z3 + c2,2Z

2
3 + c1,3Z3Z4 + c0,4Z

2
4 .

We set 2 homogeneous polynomials F1 and F2 of degree 3 with the variables Z0, · · · , Z4 :

F1 := Z3Q1 − Z2Q2 + Z0Q3(#-12)

F2 := −Z4Q1 + Z3Q2 − Z1Q3.

To simplify the notation, we set
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M := [F1, F2] , Ψ =

 φ2,3

−φ1,3

φ1,2

 , Q =

 0 Q3 Q2

−Q3 0 Q1

−Q2 −Q1 0

 .(#-13)

Then a minimal of the homogeneous coordinate ring RX of the curve X is given explicitly as follows.

0 ←−−−− RX ←−−−− S
δ1←−−−− S(−2)⊕3 ⊕ S(−3)⊕2

δ2←−−−− S(−4)⊕3 ⊕ S(−3)⊕2 δ3←−−−− S(−6) ←−−−− 0,

(#-14)

where each differential map is defined by a matrix :

δ1 = [tΨ,M ] = [φ2,3, −φ1,3, φ1,2, F1, F2]

δ2 =

[
Q tΦ
−Φ 0

]
=


0 Q3 Q2 Z4 Z3

−Q3 0 Q1 Z3 Z2

−Q2 −Q1 0 Z1 Z0

−Z4 −Z3 −Z1 0 0
−Z3 −Z2 −Z0 0 0

(#-15)

δ3 =

[
−Ψ
−tM

]
=


−φ2,3

φ1,3

−φ1,2

−F1

−F2

 .

These matrices act from the left, and every element in a S-free module is considered as a column vector
with S-valued coefficients.

Using the resolution above, we can consider the condition that the trigonal canonical curve of genus
5 has a homological shell surface of ∆-genus 2.

Lemma 4.1 (cf. [16]) Let X ⊂ P4(C) = P be a trigonal curve of genus 5. Then, in the following three
conditions, each former condition implies the latter condition.

(4.1.1) There exists a homological shell surface W of X with ∆-genus 2.

(4.1.2) In the resolution (#-14), there are two surjective S-linear homomorphisms p1 : S(−2)⊕3 ⊕
S(−3)⊕2 → S(−2)⊕2 and p2 : S(−4)⊕3⊕S(−3)⊕2 → S(−4)⊕S(−3)⊕2 such that the homomor-
phism p1 ◦ (δ2|K) : K := Ker(p2)→ S(−2)⊕2 is a zero map.

(4.1.3) We can find suitable two 2× 2-matrices H, H ′ with coefficients in homogeneous polynomials of
S in degree 1, and 2 × 3-matrix T , and 3 × 2 matrix T ′ whose rank are 2 and both coefficients
are constants such that

T ·Q · T ′ = H · Φ · T ′ − T · (tΦ) ·H ′.
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To see the relation among the three conditions: (4.1.1) ∼ (4.1.3) above, let us recall the exact com-
mutative diagram induced by the strongest condition (4.1.1) :

S(−2)⊕2

S(−4)
⊕

S(−3)⊕2

p1

x xp2

0 ←−−−− RX ←−−−− S
δ1←−−−−

S(−2)⊕3

⊕
S(−3)⊕2

δ2←−−−−
S(−4)⊕3

⊕
S(−3)⊕2

δ3←−−−− S(−6) ←−−−− 0x ∥∥∥ i1

x xi2

0 ←−−−− RW ←−−−− S
δ′1←−−−−

S(−2)
⊕

S(−3)⊕2

δ′2←−−−− S(−4)⊕2 ←−−−− 0,

(#-16)

where the homomorphisms i1 and i2 are induced as a part of an induced homomorphism of chain complexes
from the natural ring homomorphism RW → RX , and the homomorphisms p1 and p2 are defined by
canonical quotient maps.

On the other hand, the weakest but the most complicated condition (4.1.3) essentially arises from the
zero map p1 ◦δ2 ◦ i2 in the diagram (#-16) above. In general situation, it is not so easy to find the matrix
T , T ′, H, H ′ as in the weakest condition (4.1.3). However, if we consider that the essential point of the
condition (4.1.3) is to make a 2× 2 zero matrix from the 5 × 5 matrix of δ2, the easiest situation is the
case that the original 5 × 5 matrix of δ2 contains 2 × 2 zero matrix without any transformation. So we
have only to find a good curve such that one of the three quadrics Q1, Q2, Q3 vanishes.

On the other hand, the original plane quintic curve C0 = {F̂0 = 0} must satisfy the two conditions:
(1) irreducibility ; (2) the smoothness except the point p0. Reviewing the definition (#-11) of the quadrics
Q1, Q2, Q3, the quadric Q1 is the easiest one to be vanished without losing the controlablility for making
the curve C0 satisfy the two conditions above.

In the affine coordinates x = U1/U0, y = U2/U0, the affine equation f̂0(x, y) := F̂0/U
5
0 starts from

the term of degree 2 and ends at the term of degree 5 which does not contain the term y5.
For example, let us consider a quintic equation f̂0(x, y) := xy + y4 + x5. It is very easy to verify the

irreducibility of the polynomial f̂0(x, y). Its homogenized polynomial F̂0 has the form :

F̂0 = U3
0U1U2 + U0U

4
2 + U5

1 .

Then, it is also easy to show that the curve C0 = {F̂0 = 0} has only singular point at p0 = [1 : 0 : 0].
By the the definition (#-11), we get

Q1 := 0, Q2 := −Z2
2 , Q3 := Z0Z1 + Z2

4 .

Next we apply the definition (#-12), we obtain

F1 := Z3
2 + Z2

0Z1 + Z0Z
2
4 , F2 := −Z2

2Z3 − Z0Z
2
1 − Z1Z

2
4 .

In this case, by the reason that Q1 = 0, for the weakest condition (4.1.3), we have only to set H = O2×2,
H ′ = O2×2, T = [O2×1, E2], T

′ = t[O2×1, E2] where E2 denotes 2× 2 identity matrix, and Op×q does the
zero matrix of type p× q.
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To construct the homological shell surface W of ∆-genus 2, observing the diagram (#-16), we have
to choose suitable two rows from the 5× 5 matrix δ2 for the matrix δ′2. Then we can find that the 3× 2
matrix δ′2 should be constructed from the second row and the third row of the 5× 5 matrix δ2, namely

δ′2 =

 Q3 Q2

−Z3 −Z1

−Z2 −Z0

 =

 Z0Z1 + Z2
4 −Z2

2

−Z3 −Z1

−Z2 −Z0

(#-17)

Then, for the 1 × 3 matrix δ′1, it is natural to choose the first row, the fourth row, and the fifth row of
the 1× 5 matrix δ1, namely

δ′1 = [G1 = φ2,3, F1, F2] = [Z0Z3 − Z1Z2, Z
3
2 + Z2

0Z1 + Z0Z
2
4 , −Z2

2Z3 − Z0Z
2
1 − Z1Z

2
4 ].

(#-18)

Thus our candidate for a homological shell surface W of ∆-genus 2 for the curve X is defined by the
system of equations:

 Z0Z3 − Z1Z2 = 0
Z3
2 + Z2

0Z1 + Z0Z
2
4 = 0

−Z2
2Z3 − Z0Z

2
1 − Z1Z

2
4 = 0.

(#-19)

Then it is easy to check that the sequence:

0 ←−−−− RW ←−−−− S
δ′1←−−−−

S(−2)
⊕

S(−3)⊕2

δ′2←−−−− S(−4)⊕2 ←−−−− 0,(#-20)

forms a chain complex, where the matrices δ′1 and δ′2 are given by (#-18) and (#-17) above. Moreover,
by a rather hard and brutal calculation, we can also check the exactness of the complex (#-20).

Thus we obtain a homological shell surface W of ∆-genus 2 for the curve X, where the canonical
curve X is defined by the system of equations


Z0Z3 − Z1Z2 = 0
Z1Z3 − Z0Z4 = 0
Z2Z4 − Z2

3 = 0
Z3
2 + Z2

0Z1 + Z0Z
2
4 = 0

−Z2
2Z3 − Z0Z

2
1 − Z1Z

2
4 = 0.

(#-21)

Remark 4.2 The surface W defined by the equations (#-19) has only one singularity at the point q0 :=
[0 : 0 : 0 : 1 : 0]. Since the point q0 does not satisfy one of the equations (#-21) of the curve X :
Z2Z4 − Z2

3 = 0, we see that the curve X does not go through the point q0. Thus, this homological shell
surface W is actually a geometric shell of the canonical curve X.
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