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Abstract

To get more evidences for general conjectures raised in [11], which are on ∆-genus inequality and on
the integrality of pregemetric shells (cf. Conjecture 1.1), we investigate the pregeometric shells of a
canonical curve of genus ≤ 5.
Keywords: pregeometric shell, canonical curve, trigonal curve, genus ≤ 5

§0 Introduction.
Our main concern is to understand the “geometric structure” of a projective embedding of a given variety
X, namely to study intermediate ambient schemes satisfying the “global Tor injectivity condition”, i.e. a
certain good condition from the view point of syzygies for the embedded variety X. Such an intermediate
ambient scheme is called “a pregeometric shell” (abbr. PG-shell), whose precise definition is given in
Definition 3.1, and was first introduced in [10]. Related with this concept, we raised several problems
and conjectures in [11], which include the conjecture on an inequality for ∆-genera and the conjecture
on integrality of pregemetric shells (cf. Conjecture 1.1).

To obtain evidences for these two conjectures, we started a project of classifying pregeometric shells
in many classical examples of projective embeddings where the minimal free resolutions of the homoge-
neous coordinate rings are already known. For example, in [13], [14], [15] and [16], we classified all the
pregeometric shells of given embedded varieties X of ∆-genus zero (of minimal degree). In all these cases,
we obtained affirmative results for the both conjectures.

Thus, in this article, we carry out the classification for pregeometric shells of canonical curves of
genera ≤ 5, explicitly. In these cases, the minimal free resolutions of the homogeneous coordinate rings
of the canonical curves are not in general of pure degree and not of Koszul type, which attracts our
paticular interest. Among them, the most interesting cases are the cases of trigonal cases of genus 5
canonical curves, which need more refined analysis on the minimal free resolutions than those already
obtained in classical references such as [8] and [2]. After all, we can confirm that our two conjectures
mentioned above hold also for canonical curves of genera ≤ 5 (cf. Main Theorem 2.1) and can find a new
type of pregeometric shell (cf. Remark 4.1).

Also in this article, we use successively the notation and conventions in [13] without mention.
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leads into finding a new type of pregeometric shell, and to Prof. M. Hashimoto for teaching him a good
reference.

∗2167 Shosha, Himeji, 671-2201 Japan.
E-mail address : usa@sci.u-hyogo.ac.jp
Typeset by AMS-LaTEX

1

Reports of Graduate School of Material Science and Graduate School of Life Science, University of  Hyogo  No.20 (2009)



§1 Conjectures.
Let us recall two conjectures on pregeometric shells from [11] and [13]. See Definition 3.1 for precise
definitions on our terminology.

Conjecture 1.1 Let P = PN (C) be an N-th projective space with the tautological ample line bundle
OP (1) = OP (H) and V ⊆ W ⊆ P its closed subschemes.

(1.1.1) Assume that the scheme V is a variety, namely reduced and irreducible and that the closed
subscheme W is a pregeometric shell of V . Then the subscheme W is also a variety.

(1.1.2) [∆-genus inequality conjecture] Suppose that the both subschemes V and W are varieties.
If W is a pregeometric shell of V , then the inequality: ∆(V,OV (1)) ≥ ∆(W,OW (1)) holds on
their ∆-genera (cf. ∆(V,OV (1)) := dim(V ) + deg(OV (1))− h0(V,OV (1)) ; see [4]).

Remark 1.2 On the conjecture (1.1.2), we can define a ∆-genus for a pair of a scheme and an ample
invertible sheaf by using its Hilbert polynomial to define the degree, and formulate this conjecture without
assuming integrality of V and of W . For additional information on these two conjectures, see §1 of [15].

§2 Main Results.
Let us give an overview by summarizing our main results in this article as a main theorem. Here we
should emphasize again that our “schemes” of course may have a non-equidimensional component or a
non-reduced structure.

Main Theorem 2.1 Let X ⊆ P = Pg−1(C) be a canonical curve of genus g ≤ 5. Namely, taking a non
hyperelliptic curve C of genus 3 ≤ g = g(C) ≤ 5 and its canonical embedding Φ|KC | : C → P = Pg−1(C),
we set X := Φ|KC |(C). Suppose that a closed subscheme W ⊆ P is a pregeometric shell of X. Then
the scheme W is always arithmetically Cohen-Macaulay and is a variety, namely irreducible and reduced.
Moreover, the inequality : ∆(W,OW (1)) ≤ ∆(X,OX(1)) = ∆(C,KC) = g−1 holds, where the ample line
bundles OW (1) and OX(1) are the restrictions of the ample tautological line bundle OP (1) = OP (H).

§3 Preliminaries.
In this section, we prepare several facts and concepts which appeared already in our previous papers :
[11] ∼ [16].

First we recall our key concepts for studying the geometric structures of projective embeddings, the
two of them, namely “PG-shell” and “G-shell”, were introduced first in [10]. By reconsidering classical
examples in Complex Projective Geometry including varieties of minimal degree, standing on this new
point of view, we can find many good actual examples of these concepts in a number of classical works
such as [6], [7], [8], [4] and so on.

Definition 3.1 (shells and cores) Let V and W be closed subschemes of P = PN (C) which satisfy
V ⊆ W (namely the inclusion of the defining ideal sheaves: IV ⊇ IW in the structure sheaf OP of P ; In
this case, the subscheme W is called simply an intermediate ambient scheme of V ).
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(3.1.1) If the natural map:

μq,x : Tor
OP,x
q (OW,x, OP,x/mP,x)→ TorOP,xq (OV,x, OP,x/mP,x)

is injective for any integer q ≥ 0 and for any point x on V (abbr. “local Tor injectivity condi-
tion”), we say that W is a local shell of V and that V is a local core of W , where mP,x denotes
the maximal ideal of the local ring OP,x.

(3.1.2) If the natural map:

μq : Tor
S
q (RW , S/S+)→ TorSq (RV , S/S+)

is injective for every integer q ≥ 0 (abbr. “global Tor injectivity condition”), we say that W is
a pregeometric shell (abbr. PG-shell) of V and that V is a pregeometric core (abbr. PG-core)
of W .

(3.1.3) If the schemes V and W are closed subvarieties, the variety W is a local shell of V , and also a
pregeometric shell of V , then we say that the variety W is a geometric shell (abbr. G-shell) of
V and the variety V is a geometric core (abbr. G-core) of W .

For the subscheme V , the total space P and V itself are called trivial PG-shells (or trivial G-shells if V
is a variety).

Remark 3.2 On geometric shells, we have slightly modified in [14] its definition from the one including
the condition: V ⊆ Reg(W ) in [10] to the other one including the condition of local Tor injectivity as in
(3.1.3). On the definition (3.1.1) of local shell, let us consider the spacial cases such as V is smooth at
the point x or V is locally complete intersection at the point x. Then, if W is a local shell of V , we see
that W is smooth at the point x or W is a locally complete intersection at the point x, respectively. Thus
the condition that the scheme W is a local shell of V implies that Reg(V ) ⊆ Reg(W ).

Now, in the following proposition, we review several elementary properties of PG-shells (for their
proves, see [11]). On the properties of G-shells related to their restricted syzygy bundles and infinitesimal
syzygy bundles, which are not presented here, see [12].

Proposition 3.3 Let V and W be closed subschemes of P = PN (C) which satisfy V ⊆W .
(3.3.1) If W is a hypersurface of P , then W is a pregeometric shell of V if and only if the equation of

W is a member of minimal generators of the homogeneous ideal IV of V .

(3.3.2) Let V be a reduced and irreducible closed subscheme of P , a closed subschemeW is of codimension
1 in the total space P and a pregeometric shell of the variety V . Then W is of pure codimension
1, namely a divisor of P , reduced and irreducible .

(3.3.3) Assume that the subscheme V is a complete intersection. Then the scheme W is a pregeometric
shell of V if and only if the subscheme W is defined by a part of minimal generators of IV .

(3.3.4) Take a closed scheme Y such that V ⊆ Y ⊆ W . Assume that W is a pregeometric shell
of V . Then W is also a pregeometric shell of Y . In particular, the subscheme W is also a
pregeometric shell of the m-th infinitesimal neighborhood Y = (V/W )(m) of V in W , where

(V/W )(m) = (|V |, OW /Im+1V/W ).
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(3.3.5) Fix the subscheme V of codim(V, P ) ≥ 2. Then all non-trivial pregeometric shells of V form a
non empty algebraic family of finite components (N.B. The family of all non-trivial G-shells of
V may be empty even if V itself is a smooth variety).

(3.3.6) If W is a pregeometric shell of V , then we have an inequality: arith.depth(V ) ≤ arith.depth(W )
on their arithmetic depths. In particular, if the natural restriction map H0(P,OP (m)) →
H0(V,OV (m)) is surjective for all integers m (i.e. RV =gRV ), then the natural restriction map
H0(P,OP (m))→ H0(W,OW (m)) is also surjective for all integers m (i.e.RW = gRW ). In other
words, the arithmetic D2 condition is inherited from pregeometric cores to their pregeometric
shells.

(3.3.7) If arith.depth(V ) ≥ 2 and the subscheme W is a pregeometric shell of the subscheme V , then we
have an inequality on their Castelnuovo-Mumford regularity(cf. [3]): regCaM (V ) ≥ regCaM (W ).

(3.3.8) Assume that there exist r hypersurfaces D1, . . . , Dr in P with homogeneous equations F1, · · · , Fr
of degree m1, · · · ,mr, respectively, and satisfying the conditions : (a) V =W ∩D1 ∩ . . . ∩Dr ;
(b) H0(Wt, OWt) = C (t = 0, · · · , r), where W0 :=W and Wt :=W ∩D1∩ . . .∩Dt (t = 1, · · · , r)
; (c) the homogeneous equations F1, · · · , Fr form an OW -regular sequence, namely the sequence
:

0 −−−−→ OWt−1(−mt)
×Ft−−−−→ OWt−1 ,

is exact for t = 1, · · · , r. If arith.depth(V ) ≥ 2, then W is a pregeometric shell of V .

(3.3.9) Assume that the subscheme V is non-degenerate, namely no hyperplane contains V . If W is a
2-regular scheme (more precisely, its homogeneous ideal IW is 2-regular e.g. a variety of minimal
degree), namely the homogeneous coordinate ring RW of W has a minimal S-free resolution of
the form : 0← RW ← S ← F1(−2)← F2(−3)← · · ·← Fp(−p− 1)← · · · (cf. [3]), where Fu(v)
denotes ⊕S(v) : a direct sum of several copies of S with degree v shift, then W is a pregeometric
shell of V .

(3.3.10) Assume that there is a hyperplain H ⊂ P including both the schemes V and W . Then the scheme
W is a pregeometric shell of V in H if and only if the scheme W is a pregeometric shell of V in
P .

(3.3.11) Assume that arith.depth(V ) ≥ 2 and the scheme W is a pregeometric shell of V in P . If we take
a hyperplain H ⊂ P with a linear equation F which is an OV and OW -regular element, then the
scheme W ∩H is a pregeometric shell of V ∩H in the projective space H ∼= PN−1(C) (or in P ).

(3.3.12) Suppose that H0(OV ) = H0(OW ) = C. Take a hyperplain H ⊂ P with a linear equation F
which is an OV and OW -regular element. Assume that arith.depth(V ∩H) ≥ 2 and the scheme
W ∩H is a pregeometric shell of V ∩H in the projective space H (or in P ). Then the scheme
W is a pregeometric shell of V in P .

Remark 3.4 To handle pregeometric shells of codimension one, before applying the claim (3.3.1), we
should take care of the fact that for an arbitrary closed scheme V ⊆ P , the condition that codim(W ) = 1
and the scheme W is a pregeometric shell of the scheme V does not in general imply that the scheme W
is a divisor of P since we do not assume, for example, the scheme W is equidimensional and so on. It
may happen that the scheme W has a primary component of codimension 1 and has another component
of codimension more than 1 or an embedded component (e.g. see an example in Remark 1.4 of [16]).
Thus, to consider pregeometric shells of codimension 1 for a variety V , we need the claim (3.3.2).
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To handle Hilbert polynomials efficiently, we recall the following lemma from [13].

Lemma 3.5 (Finite factorial series expansion of Taylor type) Let us consider a polynomial of real
coefficients f(x) ∈ R[x] of degree r, in other words, a real valued function f(x) defined on the field of real
numbers R (or on the ring of rational integers Z) which has an expression by factorial monomials x[k]
(k = 0, 1, . . . , r):

f(x) = p0 +
³p1
1!

´
x[1] +

³p2
2!

´
x[2] + · · ·+

µ
pr−1
(r − 1)!

¶
x[r−1] +

³pr
r!

´
x[r]

= prAr(x) + pr−1Ar−1(x) + · · ·+ p1A1(x) + p0,

where the coefficient pk is also a real number, and the k-th factorial monomial x
[k] means (x + k)(x +

k − 1)(x+ k − 2) · · · (x+ 1) and the Hilbert function Ak(x) of Pk(C) has the form:

Ak(x) =
x[k]

k!
=

µ
x+ k
k

¶
=
(x+ k)(x+ k − 1) · · · (x+ 1)

k!
.

Then the coefficient pk can be computed by using the (backward) difference operator ∇ as follows.

pk = (∇kf)(−1)

As in [13], for a coherent OP -module F on P = PN (C), its Hilbert polynomial χ(F (m)) = AF (m) is
expressed in the form:

AF (m) =

NX
k=0

pk(F )Ak(m),

where pk(F ) denotes a suitable coefficient determined by the procedure above. For a closed subscheme
V ⊆ P , we use the symbols: AV (m) and pk(V ) instead of AOV (m) and pk(OV ), respectively.

We often use the following facts to simplify our argument.

Lemma 3.6 Let V ⊆ W ⊆ P = PN (C) be closed subschemes which are both of dimension n, equidi-
mensional, and do not have any non-isolated associated point (e.g. the both schemes are equidimensional
and locally Cohen-Macaulay). Assume that deg(V ) = deg(W ) = d. Then we have V =W as schemes.

Proof. It is enough to show the coincidence of the sheaves of the defining ideals IV = IW , or equivalently,
Γ(D+(Zk), IV ) = Γ(D+(Zk), IW ) on any affine open set D+(Zk) = Spec(Ak) ⊆ P (k = 0, 1, ..., N), where
the ring Ak denotes C[(Z0/Zk), ..., (ZN/Zk)]. Consider an exact sequence of structure sheaves :

0 −−−−→ IV/W −−−−→ OW −−−−→ OV −−−−→ 0.

Then, the Hilbert polynomials satisfy that χ(IV/W (mH)) = χ(OW (mH))− χ(OV (mH)) = {(d/n!)mn+
(lower terms)}− {(d/n!)mn + (lower terms)}, which implies that the degree of the Hilbert polynomial
χ(IV/W (mH))) is less than or equal to n − 1, namely dim(Supp(IV/W )) ≤ n − 1. Take any irreducible
component Wa of the scheme W and its generic point ζa ∈ P . Then, (IV/W )ζa = 0 and OV,ζa = OW,ζa ,
which means that the stalks of the sheaves of ideals IV,ζa and IW,ζa are the same mP,ζa-primary ideals,
where mP,ζa denotes the unique maximal ideal of the local ring OP,ζa at the point ζa. If ζa ∈ D+(Zk)
or equivalently Wa ∩ D+(Zk) 6= φ, then the pull-back ideal qa := τ−1a (IV,ζa) = τ−1a (IW,ζa) by the
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localization map τa : Ak → OP,ζa is the pa-primary component of the ideal Γ(D+(Zk), IV ) and of the
ideal Γ(D+(Zk), IW ), where the ideal pa denotes the prime ideal corresponding to the generic point
ζa. Thus we see the coincidence of the primary decompositions of the both ideals Γ(D+(Zk), IV ) and
Γ(D+(Zk), IW ) because the both ideals do not have any non-isolated associated prime.

By the similar argument, we can easily see the next fact.

Lemma 3.7 Let W ⊆ P = PN (C) be an irreducible (but may not be reduced) closed subscheme. Putting
the reduced structure and set a scheme V := Wred. Take a generic point ζ of W . Then deg(W ) =
deg(V ) · length(OW,ζ).
Proof. We set k := length(OW,ζ) and use induction argument on k. If we have a non-isolated associated
point of W , it does not have an effect on the counting degree, we may remove it by using primary
decomposition and assume that the homogeneous ideal IW of the scheme W is a primary ideal. If k = 1,
then W = V and the claim is obvious. Now we assume k ≥ 2. Then we have an ideal J in the local
Artinian ring OW,ζ which satisfies that length(OW,ζ/J) = k − 1 and length(J) = 1. For each affine
open set U = Spec(A) of the scheme W , taking the pull-back of the ideal J by the localization map
A → OW,ζ , we obtain a sheaf of ideals J which satisfies Supp(J ) = V and defines a closed subscheme
Y := (|V |, OW /J ) with length(OY,ζ) = k− 1. By induction hypothesis, deg(Y ) = (k− 1) · deg(V ). Since
(IV · J )ζ = 0, deg(J ) = deg(J /IV · J ). Then the sheaf J /IV · J is an OV -module of rank one, which
implies deg(J /IV · J ) = deg(V ). Hence deg(W ) = deg(Y ) + deg(J ) = (k − 1) · deg(V ) + deg(V ) =
k · deg(V ).

§4 Classification on PG-shells of a canonical curves X of g ≤ 5.
Let us take a canonical curves X of genus g ≤ 5 and a pregeometric shell (scheme) W of X as in Main
Theorem (2.1). We classify the scheme W by following the cases below.

• First we consider the case g = 3, g = 4, or the generic case in g = 5, i.e. a non-trigonal case. Then, the
canonical curve X is a non-singular quartic curve in P2(C), a (2, 3)-complete intersection in P3(C), or a
(2, 2, 2)-complete intersection in P4(C), respectively (cf. [6] and [7]). Thus, in these cases, we obtain the
result as in Main Theorem (2.1) by just applying the claim (3.3.3).

• In the rest of this paper, we consider only the remaining case, namely the canonical curve X ⊆ P =
P4(C) = Proj(S) is a trigonal curve of g = 5, where the graded ring S denotes the polynomial ring
C[Z0, Z1, Z2, Z3, Z4] with the usual grading.

Let us recall the results in [6] and in [7]. The curve X has a unique complete linear system g13 which
induces a smooth rational normal scroll surface V of type S(2, 1) which satisfies X ⊆ V ⊆ P . Since this
surface V is a variety of minimal degree, namely a variety of∆-genus zero, the claim (3.3.9) shows that the
surface V is a pregeometric (in fact “geometric”) shell of X. The surface V is also defied by all the degree
2 equations of X. This surface V also appeared in our paper [13], which is isomorphic to the one point
blow up of a projective plane Y = P2(C), namely a rational ruled surface Σ1. Using the notation of [13],
the hyperplane section divisor H = H |V is linearly equivalent to the divisor 2ξ + E1, where the divisor
E1 is the exceptional divisor coming from the one point blow up, and the divisor ξ denotes the strict
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transform of a line ` in Y = P2(C) or equivalently a fiber of the morphism Σ1 → P1(C) determined as
the rational ruled surface or equivalently as the rational normal scroll surface. As a divisor on the surface
V , the canonical curve X is linearly equivalent to the divisor 5ξ + 3E1 = 3H − ξ. The homogeneous
coordinate ring RX of the canonical curve X is an arithmetically Gorenstein ring. A minimal S-free
resolution FX• of the ring RX and a minimal S-free resolution FV • of the homogeneous coordinate ring
RV of the surface V are given as follows.

FX• : S
ψ1←−−−− S(−2)⊕3 ⊕ S(−3)⊕2 ψ2←−−−− S(−3)⊕2 ⊕ S(−4)⊕3 ψ3←−−−− S(−6) ←−−−− 0°°° x⏐⏐ x⏐⏐

FV • : S
ψ01←−−−− S(−2)⊕3 ψ02←−−−− S(−3)⊕2 ←−−−− 0

(#-1)

Now we consider a minimal S-free resolution FW• of the homogeneous coordinate ring RW of the
scheme W . Since the scheme W is a pregeometric shell of the curve X, the resolution FW• has the
following form.

FW• : S
ϕ1←−−−− S(−2)⊕a1 ⊕ S(−3)⊕b1 ϕ2←−−−− S(−3)⊕a2 ⊕ S(−4)⊕b2 ϕ3←−−−− S(−6)⊕a3 ←−−−− 0,

(#-2)

where a1 = 0, 1, 2, 3 ; b1 = 0, 1, 2 ; a2 = 0, 1, 2 ; b2 = 0, 1, 2, 3 ; and a3 = 0, 1. The Hilbert
polynomial AW (m) = χ(OW (mH)) of the scheme W is calculated by AW (m) = A4(m) − {a1A4(m −
2)+ b1A4(m− 3)}+ {a2A4(m− 3) + b2A4(m− 4)}− a3A4(m− 6). Applying Lemma 3.5, the coefficients
pk(W ) of the Hilbert polynomial AW (m) =

P4
k=0 pk(W )Ak(m) are given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p4(W ) = 1− a1 + (a2 − b1) + b2 − a3
p3(W ) = 2a1 − 3(a2 − b1)− 4b2 + 6a3
p2(W ) = −a1 + 3(a2 − b1) + 6b2 − 15a3
p1(W ) = b1 − a2 − 4b2 + 20a3
p0(W ) = b2 − 15a3.

(#-3)

• • The case of codim(W ) = 1.

Apply the claims (3.3.1) and (3.3.2). Then we see that the scheme W is a irreducible and reduced
hypersurface which corresponds to a memmber of minimal generators for the homogeneous ideal IW , and
there for degW = 2, 3, namely its ∆-genus is 0 or 1.

• • The case of codim(W ) = 3.

Since we assume codim(W ) = 3, we see that the coefficients of the Hilbert polynomial AW (m) of
W satisfies p4(W ) = p3(W ) = p2(W ) = 0. Thus the formula (#-3) shows a1 = b2 = 3 ; a3 = 1
and a2 = b1 = 0, 1, 2. Then, we have AW (m) = 8A1(m) − 12 and therefore AW (m) = AX(m).
Since the curve X is a closed subscheme of the scheme W , we have an exact sequence of sheaves
0 → IX/W → OW → OX → 0, we have χ(IX/W (m)) = AW (m) − AX(m) = 0, which implies IX/W = 0,
or equivalently X =W as schemes.
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• • The case of codim(W ) = 2.

First we consider the case a3 = 1. Take a homomorphism of complexes α• : FW• → FX• which
arises from the natural ring homomorphism RW → RX . Since the homomorphism α• induces injective
homomorphisms μq : Tor

S
q (RW , S/S+) → TorSq (RX , S/S+) for q ≥ 0, in the following diagram, the

vertical arrow α3 is an isomorphism and the vertical arrow α2 sends the free module S(−3)⊕a2⊕S(−4)⊕b2
to a direct summand of the free module S(−3)⊕2 ⊕ S(−4)⊕3.

FX• : S(−3)⊕2 ⊕ S(−4)⊕3 ψ3←−−−− S(−6) ←−−−− 0

α2

x⏐⏐ x⏐⏐α3
FW• : S(−3)⊕a2 ⊕ S(−4)⊕b2 ϕ3←−−−− S(−6) ←−−−− 0

Now we take a system of (homogeneous) minimal generators {G1, G2,G3, F1, F2} of the homogeneous
ideals IX of the curve X with degG1 = degG2 = degG3 = 2 and degF1 = degF2 = 3. The first differential
map ψ1 of the complex FX• is given by a 1× 5-matrix M1 = [G1, G2, G3, F1, F2]. Since the homogeneous
coordinate ring RX is an arithmetically Gorenstein ring, the minimal graded S-free resolution FX• is
symmetric, and therefore the 5 × 1-matrix M3 of the third differential map ψ3 of the complex FX•
coincides with the transposed matrix of the matrix [F1, F2, G1, G2, G3] up to the (left) action of a graded
automorphism of the free module S(−3)⊕2 ⊕ S(−4)⊕3, which is given by a 5× 5-matrix of the form :

T =

∙
T1,1 T1,2
0 T2,2

¸
,

where T1,1 ∈ GL(2,C), T2,2 ∈ GL(3,C), and T1,2 is a 2 × 3-matrix whose coefficients are all ho-
mogeneous polynomials of degree 1. Once we have a2 < 2 or b2 < 3, then we see that one element of the
set {G1, G2,G3, F1, F2} is generated by others, namely {G1, G2, G3, F1, F2} is not minimal generators of
IX , which contradicts the assumption. Thus we see that a2 = 2 and b2 = 3. On the other hand, from
p4(W ) = 0 and the formula (#-3), we get a1 + b1 = 5, which shows a1 = 3 and b1 = 2, namely X = W
as schemes. This is a contradiction.

Hence we have a3 = 0. Then, from the resolution (#-2), we see that the homological dimension
hdS(RW ) of the homogeneous coordinate ring RW satisfies hdS(RW ) ≤ 2, namely the depth at the
vertex satisfies arith.depth(RW ) = dimS − hdS(RW ) ≥ 3 = dim(RW ) by the Auslander-Buchsbaum
formula, which implies that the ring RW is an arithmetically Cohen-Macaulay ring, H0(P,OP (1)) ∼=
H0(W,OW (1)), and that the scheme W is locally Cohen-Macaulay and equi-dimensional.

Now we use the assumption codim(W ) = 2, namely p4(W ) = p3(W ) = 0. Applying the formula (#-3)
and the fact a3 = 0, we have the 5 cases as in the following list.

Cases (a1, b1) (a2, b2) a3
(i) (1, 2) (0, 2) 0
(ii) (2, 0) (0, 1) 0
(iii) (2, 1) (1, 1) 0
(iv) (2, 2) (2, 1) 0
(v) (3, 0) (2, 0) 0

Table 1: Betti Numbers
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Now let us recall the resolutions (#-1) and the fact that all the degree 2 equations of the curve X
come from those of the surface V of minimal degree. Thus we see that the case (v) means W = V and
∆(W,OW (1)) = 0 ≤ ∆(X,OX(1)) = 4.

• • • The cases (ii), (iii), (iv)
In these case, by calculating p2(W ) from the formula (#-3), we have deg(W ) = 4. On the other

hand, the scheme W has independent irreducible degree 2 equations {fG1,fG2} which come from those of

the surface V . Now we take a new closed subscheme W0 := {fG1 = fG2 = 0}, which is a (2, 2)-complete
intersection and of degree 4. Since there is an inclusion W ⊆ W0 of arithmetically Cohen-Macaulay
schemes with deg(W ) = deg(W0) = 4, which means that W = W0 by Lemma 3.6, only the case (ii) is
remained.

However, in the case (ii), we have an inclusion of closed schemes X ⊆ V ⊆ W = W0, which
induces a graded S/S+-linear homomorphisms (S/S+)(4) ∼= TorS2 (RW , S/S+) → TorS2 (RV , S/S+)

∼=
(S/S+)

⊕2
(3) → TorS2 (RX , S/S+), which implies that the induced homomorphism μ2 : Tor

S
2 (RW , S/S+)→

TorS2 (RX , S/S+) is a zero map and not injective. Thus we obtain a contradiction.

• • • The cases (i)
By the formula (#-3), we have the Hilbert polynomial AW (mH) = 5A2(m)−6A1(m)+2 of the scheme

W , which implies deg(W ) = 5. By using the fact that the scheme W is arithmetic Cohen-Macaulay and
contains the curve X which is not linearly degenerate, we see that h0(W,OW (1)) = 5. So, in the sense of
generalized ∆-genus as in Remark 1.2, we have ∆(W,OW (1)) = 2 + 5− 5 = 2 ≤ ∆(X,OX(1)) = 4.

Since X ⊆ W and the scheme W is equidimensional, there is an irreducible component W0 of dimen-
sion 2 in W with X ⊆ W0. If deg((W0)red) ≤ 2, then there is a hyperplane H0 of P which contains the
reduced scheme (W0)red, and therefore the curve X is linearly degenerate, which is a contardiction. Thus
we see that deg((W0)red) ≥ 3. Since the scheme W is locally Cohen-Macaulay, the scheme W does not
have any non-isolated associated point, the scheme W0 has no embedded point eihter. Take the generic
point ζ0 of the scheme W0. If lengthOW0,ζ0 ≥ 2, then deg(W0) ≥ 2deg((W0)red) ≥ 2 · 3 = 6 by Lemma
3.7, which give a contradiction to the fact W0 ⊆ W . Hence we have lengthOW0,ζ0 = 1 and the scheme
W0 has no nilpotent structure and is a variety of degree ≥ 3.

• • • • Cases (i-a) : cases (i) & deg(W0) = 5
Now we consider the case deg(W0) = 5. Then the scheme W can not have any other irreducible

component of dimension 2, which means that W =W0 and the scheme W itself is also a variety of degree
5. In this case, ∆(W,OW (1)) = 2 ≤ ∆(X,OX(1)) = 4.

Remark 4.1 In the first place, the author expected that the case (i-a) can not happen really. However,
Prof. A. Ohbuchi kindly suggested a possibility of the case (i-a) by constructing surfaces of degree 5
containing trigonal curves of genus 5. However, it was not so easy to study the syzygies of these surfaces
through this construction. After this suggestion, the author found an example where the case (i-a) really
happens by the aid of Lemma 5.1 in the next section. In this example, the curve X never be a hypersurface
cut of W because deg(X) = 8, deg(W ) = 5 and 5 6 | 8. On the other hand, the surface W is of ∆-genus
2, which never be a variety of minimal degree. So, this example is not a typical examples of pregeometric
shell already known and is a new type of pregeometric shell. Further discussions on this example will be
carried out in the forthcoming paper.
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• • • • Cases (i-b) : cases (i) & deg(W0) = 3
Next we handle the case of deg(W0) = 3. Then the varietyW0 is a variety of ∆-genus ≤ 0 (hence = 0)

and is defined by the equations of degree 2. Since X ⊆ W0, all of the equations of W0 come from those
of the curve X. Since deg(W0) = 3, it needs at least 3 linearly independent equations of degree 2 to be

defined. Thus we see thatW0 = V , which means that ( eG,fF1,fF2)S = IW = IV ∩IW 0 ⊆ IV = (G1, G2, G3)S
where deg(fF1) = deg(fF2) = 3, deg(G1) = deg(G2) = deg(G3) = deg( eG) = 2, IX = (G1,G2, G3,fF1,fF2)S
from our previous construction of the scheme W . Then we see that eFi ∈ (G1,G2, G3)S (i = 1, 2),

which implies that {G1, G2, G3,fF1,fF2} is not minimal generators of IX . Thus we obtain a contardiction.
• • • • Cases (i-c) : cases (i) & deg(W0) = 4

In this case, the scheme W is a union of a plane L and the variety W0 of degree 4 and of dimension 2.
Since the surfaceW0 includes the curve X , the surface W0 is not contained by any hyperplane of P = P4,
which implies the inequality h0(W0, OW0(1)) ≥ 5. Now we consider the ∆-genus of the surface W0.

0 ≤ ∆(W0, OW0(1)) = 2 + 4− h0(W0, OW0(1)) ≤ 2 + 4− 5 = 1

First we consider the case ∆(W0, OW0(1)) = 0. Then h0(W0, OW0(1)) = 6, which means that there

exists a surface fW0 in eP := P5 = P(H0(W0, OW0(1))) which is projected isomorphically to the sur-
face W0 in P by a linear projection corresponding to the natural injective linear map H0(P,OP (1)) →
H0(W0, OW0

(1)). We also have a curve eX in the surface fW0 which is isomorphic to the curve X

through this isomorphism from the surface fW0 to the surface W0. Then we have h
0( eX,OeP (1)⊗ OeX) =

h0(X,OX(1)) = 5, which gives a hyperplane eH of eP satisfying eX ⊆ eH ∩ fW0. Thus we obtain 8 =

2 · 5− 2 = deg(X) = deg( eX) ≤ degfW0 = deg(W0) = 4, which is a contradiction.
Next we consider the case ∆(W0, OW0(1)) = 1. Let us recall a system of (homogeneous) minimal

generators {G1, G2, G3, F1, F2} of the homogeneous ideals IX of the curve X with degG1 = degG2 =
degG3 = 2 and degF1 = degF2 = 3. We may assume that the equations {G1, F1, F2} give a minimal
system of generators of the homogeneous ideal IW of the scheme W = L ∪W0. In this case, we have
H0(W0, OW0

(1)) ∼= H0(P,OP (1)), apply Swinnerton-Dyer’s classification on the varieties of degree 4 (cf.
[9], [4]), and obtain that the surface W0 is a (2, 2)-complete intersection defined by two homogeneous

equations of degree 2 : (cG1, cG2)S = IW0 . By the fact : X ⊆ W0, we see that cGi ∈ IX . Since the equationscG1 and cG2 are linearly independent and of degree 2, they form a part of a minimal system of generators
of IX . On the other hand, the inclusion W0 ⊆ W implies Fi ∈ IW0 = (cG1, cG2)S (i = 1, 2), namely
Fi ∈ Γ(X, IX(2)) · S+. Thus the equations Fi can not be a part of the minimal system of generators of
IX , which gives a contradiction again.

§5 Syzygies of g = 5 trigonal curves
In this section, we give a little bit of refinement on minimal free resolutions given in [8] for g = 5 trigonal
curves. This is also a typical example for the structure theorem in [2] on the minimal free resolutions in
the case of codimension 3 and Gorenstein.

Since the trigonal curve X of genus 5 is contained by a unique rational ruled surface V , we first fix
the embedding of the surface V in PN (C) = P as follows.

Taking Y = P2(C) = Proj(C[U0, U1, U2]), we get the surface V by blowing up the plane Y at the
center p0 = [1 : 0 : 0]. The embedding of V by the linear system |2ξ + E1|, namely the linear system
coming from the conics passing through the point p0, is given by [Z0 : Z1 : Z2 : Z3 : Z4] = [U0U1 :
U0U2 : U

2
1 : U1U2 : U

2
2 ]. The equations of V are : G1 = Z0Z3 − Z1Z2 = 0, G2 = Z1Z3 − Z0Z4 = 0,

G3 = Z2Z4 − Z23 = 0. When we take a 2× 3-matrix :
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Φ =

∙
Z4 Z3 Z1
Z3 Z2 Z0

¸
,(#-4)

those equations G1, G2, G3 can be considered as G1 = ϕ2,3, G2 = −ϕ1,3, G3 = ϕ1,2, where the
determinant of 2× 2-minor matrix maded by choosing i, j columns of Φ is denoted by ϕi,j . The curve X
arises from the blowing up at the center p0 of the plane curve C0 of degree 5 which is smooth outside the
point p0 and has only one double point at the point p0. An equation bF0 of the plane curve C0 is written
by

bF0 = U30 {a1U21 + a2U1U2 + a3U22 }+ X
3≤e1+e2≤5

ce1,e2U
5−e1−e2
0 Ue11 U

e2
2 ,(#-5)

where (a1, a2, a3) 6= (0, 0, 0) and the coefficients ai, ce1,e2 are constants.
Let us consider the following 3 polynomials bF0,1, bF0,2, and bF0,3.

bF0,1 = c0,5U
4
2(#-6) bF0,2 = −
X

e1+e2=5, e1≥1
ce1,e2U

e1−1
1 Ue22

bF0,3 = U20 {a1U21 + a2U1U2 + a3U22 }+
X

3≤e1+e2≤4
ce1,e2U

4−e1−e2
0 Ue11 U

e2
2

Then we see that bF0 = U0 bF0,3 − U1 bF0,2 + U2 bF0,1. From these 3 homogeneou polynomials of degree 4

; bF0,1, bF0,2, bF0,3, we construct 3 homogeneous polynomials Q1, Q2, Q3 of degree 2 with the variables
Z0, · · ·Z4 by replacing U0U1, U0U2, U21 , U1U2, U22 by Z0, Z1, Z2, Z3, Z4, respectively. Namely,

Q1(Z4) = c0,5Z
2
4(#-7)

Q2(Z2, Z3, Z4) = −(c5,0Z22 + c4,1Z2Z3 + c3,2Z23 + c2,3Z3Z4 + c1,4Z24 )
Q3(Z0, Z1, Z2, Z3, Z4) = a1Z

2
0 + a2Z0Z1 + a3Z

2
1

+ c3,0Z0Z2 + c2,1Z0Z3 + c1,2Z1Z3 + c0,3Z1Z4

+ c4,0Z
2
2 + c3,1Z2Z3 + c2,2Z

2
3 + c1,3Z3Z4 + c0,4Z

2
4 .

Corresponding to the polynomials U1 bF0 = U1U2 bF0,1 − U21 bF0,2 + U0U1 bF0,3 and −U2 bF0 = −U22 bF0,1 +
U1U2 bF0,2 − U0U2 bF0,3, we set 2 homogeneous polynomials F1 and F2 of degree 3 with the variables
Z0, · · · , Z4 :

F1 := Z3Q1 − Z2Q2 + Z0Q3(#-8)

F2 := −Z4Q1 + Z3Q2 − Z1Q3.
Summarizing these formula by using matrices, we have :

[F1, F2] = [Q1,−Q2, Q3]
⎡⎣ Z3 −Z4
Z2 −Z3
Z0 −Z1

⎤⎦ .(#-9)
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Multiplying the matrix Φ from the right hand side to to both sides of the equality (#-9) above, we see
that :

[F1, F2] · Φ = [Q1,−Q2, Q3]
⎡⎣ 0 −ϕ1,2 −ϕ1,3
ϕ1,2 0 −ϕ2,3
ϕ1,3 ϕ2,3 0

⎤⎦ .(#-10)

The key is to transfom the right hand side of the equality (#-10) to the following.

[F1, F2] · Φ = [ϕ2,3,−ϕ1,3,ϕ1,2]
⎡⎣ 0 Q3 Q2
−Q3 0 Q1
−Q2 −Q1 0

⎤⎦ .(#-11)

To simplify the notation, we set

M := [F1, F2] , Ψ =

⎡⎣ ϕ2,3
−ϕ1,3
ϕ1,2

⎤⎦ , Q =

⎡⎣ 0 Q3 Q2
−Q3 0 Q1
−Q2 −Q1 0

⎤⎦ .(#-12)

Then the equality (#-11) and its transposed formula are written as follows.

M · Φ = tΨ ·Q(#-13)
tΦ · (−tM) = Q ·Ψ

Now, using the formula (#-13), we shall construct a minimal graded S-free resolution of the homoge-
neous coordinate ring RX as prescribed by Schreyer in [8] with a little bit of refinement. Let us remind
that X = (σX)0 by a section σX ∈ H0(V,OV (3H − ξ)). Hence we have an exact sequence :

0 −−−−→ OV (−3H + ξ)
×σX−−−−→ OV −−−−→ OX −−−−→ 0.(#-14)

Then we recall the 2 × 3-matrix Φ in (#-4), which can be considered as a sheaf homomorphism
Φ : F = ⊕3OP (−H) → G = ⊕2OP . By the technique of [1], we can obtain a family of OP -(locally)
free complexes {Cb•}b≥−1. Here, the Eagon-Northcott complex C0• and the Buchsbaum-Rim complex C1•
give minimal OP -(locally) free resolutions for OV and OV (ξ), respectively. Recall our notation (#-4) and
(#-12). Then,

C0• : [ 0 ←−−−− OV ←−−−− ] OP
tΨ←−−−− OP (−2H)⊕3 −tΦ←−−−− OP (−3H)⊕2 ←−−−− 0

C1• : [ 0 ←−−−− OV (ξ) ←−−−− ] O⊕2P ←−−−−
Φ

OP (−H)⊕3 ←−−−−
Ψ

OP (−3H) ←−−−− 0.

(#-15)

Using our formula (#-13), we lift the sheaf homomorphism σX : OV (−3H + ξ) → OV to a complex
homomorphism α• : C1•(−3H)→ C0• .
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C0• : OP
tΨ←−−−− OP (−2H)⊕3

tΦ←−−−− OP (−3H)⊕2 ←−−−− 0

α0=M

x⏐⏐ α1=Q

x⏐⏐ x⏐⏐α2=−tM
C1•(−3H) : O⊕2P (−3H) ←−−−−

Φ
OP (−4H)⊕3 ←−−−−

Ψ
OP (−6H) ←−−−− 0.

(#-16)

Then the mapping cone Cone[α• : C1•(−3H) → C0• ] gives a minimal OP (-locally) free resolution of
OX or of the homogeneous coordinate ring RX of the curve X .

0 ←−−−− RX ←−−−− S
δ1←−−−− S(−2)⊕3 ⊕ S(−3)⊕2

δ2←−−−− S(−4)⊕3 ⊕ S(−3)⊕2 δ3←−−−− S(−6) ←−−−− 0,

(#-17)

where each differential map is defined by a matrix :

δ1 = [tΨ,M ]

δ2 =

∙
Q tΦ
−Φ 0

¸
(#-18)

δ3 =

∙ −Ψ
−tM

¸
.

These matrices act from the left, and every element in a S-free module is considered as a column vector
with S-valued coefficients. Related to the work of [2], we make a remark that the middle differential map
δ2 is represented by a skew symmetric matrix.

Using the fact above, let us consider again the case (i) in the previous section.

Lemma 5.1 Let X ⊆ P4(C) = P be a trigonal curve of genus 5. Then, in the following three conditions,
each former condition implies the latter condition.

(5.1.1) There exists a pregeometric shell (scheme) W of X as in the case (i), namely its dimension is
2 and the Betti numbers (a1, b1, a2, b2, a3) = (1, 2, 0, 2, 0).

(5.1.2) In the resolution (#-17), there are two surjective S-linear homomorphisms p1 : S(−2)⊕3 ⊕
S(−3)⊕2 → S(−2)⊕2 and p2 : S(−4)⊕3⊕S(−3)⊕2 → S(−4)⊕S(−3)⊕2 such that the homomor-
phism p1 ◦ (δ2|K) : K := Ker(p2)→ S(−2)⊕2 is a zero map.

(5.1.3) We can find suitable two 2 × 2-matrices H, H 0 with coefficients in homogeneous polynomials of
S in degree 1, and 2 × 3-matrix T , and 3 × 2 matrix T 0 whose rank are 2 and both coefficients
are constants such that

T ·Q · T 0 = H · Φ · T 0 − T · (tΦ) ·H 0.

Proof. First we show that the condition (5.1.1) implies the condition (5.1.2). From [17], we have an
exact commutative diagram:
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S(−2)⊕2
S(−4)
⊕

S(−3)⊕2
p1

x⏐⏐ x⏐⏐p2
0 ←−−−− RX ←−−−− S

δ1←−−−−
S(−2)⊕3
⊕

S(−3)⊕2
δ2←−−−−

S(−4)⊕3
⊕

S(−3)⊕2
δ3←−−−− S(−6) ←−−−− 0x⏐⏐ °°° i1

x⏐⏐ x⏐⏐i2
0 ←−−−− RW ←−−−− S

δ01←−−−−
S(−2)
⊕

S(−3)⊕2
δ02←−−−− S(−4)⊕2 ←−−−− 0,

(#-19)

where the homomorphisms i1 and i2 are induced as a part of an induced homomorphism of chain com-
plexes from the canonical ring homomorphism RW → RX , and the homomorphisms p1 and p2 are defined
by canonical quotient maps. Then we see that p1◦δ2◦i2 = 0 and therefore that the condition (5.1.2) holds.

Next we see that the condition (5.1.2) implies the condition (5.1.3). Obviously, K = Ker(p2) ∼=
S(−4)⊕2, which is also a direct summand of the module S(−4)⊕3⊕S(−3)⊕2. Let us denote the inclusion
homomorphism ofK into S(−4)⊕3⊕S(−3)⊕2 by iK . Then the homomorphisms p1 and iK are represented
by the matrices :

p1 = [T,H ](#-20)

iK =

∙
T 0

H 0

¸
,

where the matrices T , H , T 0 and H 0 satisfy the conditions as in (5.1.3). Then, we just write down the
conditons p1 ◦ δ2 ◦ i2 = 0 by using the formula (#-18) and the matrices in (#-20) and get the equality in
the condition (5.1.3).

References

[1] D. A. Buchsbaum, D. Eisenbud : Generic free resolutions and a family of generically perfect ideals,
Adv. Math. 18, pp.245-301 (1975).

[2] D. A. Buchsbaum, D. Eisenbud : Algebra structures for finite free resolutions and some structure
theorems for ideals in codimension 3, Am. J. Math. 99, pp. 447-485, (1977).

[3] D. Eisenbud and S. Goto : Linear free resolutions and minimal multiplicity, J. of Algebra 88, pp.
89-133 (1984).

[4] T. Fujita : Classification theories of polarized varieties, London Math. Soc. Lect. Note Ser. 155,
Cambridge Univ. Press (1990).

[5] R. Hartshorne : Algebraic Geometry, GTM52, Springer-Verlag, (1977).

14

Reports of Graduate School of Material Science and Graduate School of Life Science, University of  Hyogo  No.20 (2009)
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