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Abstract

By generalizing the definition of Pregeometric Shells (cf. [11], [12]), we define a concept “ Pregeometric
Shell type Extensions ” (abbr. PGS-extensions) of finite graded modules over the plynomial rings.
We also give several characterizations of PGS-extensions and important examples relating with PGS-
extensions.
Keywords: minimal free resolution, pregeometric shell, pregeometric shell type extension (PGS-
extension)

§0 Introduction
Our main concern is to study the “geometric structure” of a projective embedding of a given variety X
(cf. several fundamental problems in [12]). In other words, it is to see the “pregeometric shells” (abbr.
PG-shells...cf. [11], [12]), namely intermediate ambient schemes satisfying certain good conditions from
the view point of syzygies for the embedded variety X. This is similar to Galois Theory where we study
intermediate fields to see the structure of the given extension of a field.

The concept of pregeometric shells is the one on the subideals of the homogeneous ideal IX defining the
embedded variety X . However, since all the homogeneous ideals of the plynomial ring S := C[Z0, . . . , ZN ]
and inclusion maps do not form a good category such as an abelian category, it is better to generalize
this concept for the case of graded S-modules which form an abelian category. We can also expect that
this generalization brings us convenience for studying syzygy modules.

Thus we give a definition of “ Pregeometric Shell type Extensions ” (abbr. PGS-extensions) of finitely
generated graded modules over the plynomial ring S and present severeal critera for PGS-extensions.
We will also show some examples which clarify the limits of these criteria and the difficulty of studying
pregeometric shells.

§1 Preliminaries.
First we summarize what will be used throughout this paper.

Notation and Conventions 1.1 We use the terminology of [4], [5], [8], [9] without mentioning so,
always admit the conventions, and use the notation below for simplicity.

(1.1.1) Every object under consideration is defined over the field of complex numbers C. We will work
mainly in the category of finitely generated (abbr. “ finite”) graded modules over the plynomial
ring S and graded S-linear homomorphisms. In this case, an element of a graded S-module M
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or of the ring S always means a homogeneous element of the module M or of the ring S. In
some exceptional cases, our consideration is carried out also in the category of algebraic schemes
and algebraically holomorphic morphisms, or in the categories of coherent sheaves and their
(O-linear) homomorphisms.

(1.1.2) For a coherent sheaf E on a projective subscheme V ⊆ P = PN (C), we put: Γ∗(E) :=L
m∈Z

Γ(V,E(m)). Except a few cases where we have to avoid confusion, we do not use dis-

tinguished fonts comprehensively for the graded S-modules and sheaves such as M and M, re-
spectively. If we need to distinguish clearly a sheaf M from the S-module Γ∗(M),we use the
blackboard bold font for S-module such as M = Γ∗(M). Also, for example, we denote M• for
complex of sheaves and M• for complex of S-modules, respectively.

(1.1.3) Let us take a complex projective scheme X of dimension n and one of its embeddings j : X ,→ P =
PN (C). The sheaf of ideals defining j(X) in P is denoted by IX . Take a C-basis {Z0, . . . , ZN}
of H0(P,OP (1)). Then we set:

S := C[Z0, . . . , ZN ] ∼=
L
m≥0

H0(P,OP (m))

S+ := (Z0, . . . , ZN )S ∼=
L
m>0

H0(P,OP (m))gRX :=
L
m≥0

H0(X,OX(m))

IX :=
L
m≥0

H0(P, IX(m))

RX := Im[S →gRX ] ∼= S/IX .
(#-1)

(1.1.4) For any graded S-module or graded S-linear homomorphism, its induced (S/S+)-object obtained
by tensoring (S/S+) is always denoted by adding overline on the top of the name of the original
object. For example, let L, M be finite graded S-modules, and ϕ : L → M a graded S-linear
homomorphism. Then M := M ⊗ (S/S+), and the induced (S/S+)-linear homomorphism ϕ ⊗
1(S/S+) : L = L⊗(S/S+)→M =M⊗(S/S+) is denoted by ϕ. Also the induced homomorphisms
for Tor groups or for Ext groups from the homomorphism ϕ are denoted by ϕ∗ in covariantly
induced cases such as ϕ∗ : TorSq (L, S/S+)→ TorSq (M,S/S+), and ϕ

∗ in contravariantly induced
cases such as ϕ∗ : ExtqS(M,S/S+)→ ExtqS(L, S/S+), respectively.

We say that F• →M : · · · μk+1→ Fk
μk→ · · · μ1→ F0

μ0→ M → 0 is a minimal graded S-free resolution
of a finite graded S-module M , if it is a graded S-free resolution with μk = 0 for k ≥ 1. It is
well-known that a minimal graded S-free resolution is unique up to a (non-canonical) complex
isomorphism (cf. [8], [10]).

In the process of constructing a graded S-free resolution F• → M : · · · μk+1→ Fk
μk→ · · · μ1→ F0

μ0→
M → 0 from a finite graded S-moduleM , to make our argument inductive, the symbol μ0 denotes
always an augmentation homomorphism μ0 : F0 → M instead of using the traditional symbol
ε. After we move to the process of constructing homology objects or cohomology objects such
as TorS∗ (M,−) or Ext∗S(M,−), without mentioning, we replace the homomorphism μ0 and the
module M by the zero homomorphism and the zero module, respectively, and denote it by F• with
removing “→M”.

(1.1.5) For a finite graded S-module M , we denote the degree m part of M by M(m) , namely M =L
m∈Z

M(m). To describe the homomorphisms of graded S-free modules clearly, we often descrbe

a graded S-free module by F = ⊕ni=1Sei with using a free basis {ei|deg(ei) = mi}ni=1 instead of
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by F = ⊕ni=1S(−mi) with using degree shifting. In this case, the isomorphism on each direct
summand is given by S(−m) ⊇ S(−m)(k) = S(k−m) 3 g ↔ g · e ∈ (S · e)(k) ⊆ S · e, where
deg(e) = m.

For a finite graded S-module M , its homogeneous elements {τi ∈ M(mi)}ni=1, and for a graded
S-free module L := ⊕ni=1Sei, an S-linear homomorphism ϕ : L = ⊕ni=1Sei →M with ϕ(ei) = τi
is denoted simply by ϕ : L = ⊕ni=1S[τi] → M , namely [τi] = ei and [τi] is a member of the
basis of L which is sent to the element τi of the module M by the homomorphism ϕ. When
we handle a Koszul complexe F• = {(Fk,μk)}k≥0 → M = (f1, . . . fn)S for an (homogeneous)
ideal generated by a (homogeneous) S-regular sequence {f1, . . . fn}, we also describe its k-th
differential map μk : Fk = ⊕S[fi0 ] ∧ · · · ∧ [fik ] → Fk−1 = ⊕S[fj0 ] ∧ · · · ∧ [fjk−1 ] as sending the

element [fi0 ] ∧ · · · ∧ [fik ] in the basis of Fk to the element
kX
t=0

(−1)tfit [fi0 ] ∧ · · ·
t
^ · · · ∧ [fik ] of

Fk−1.

The following concepts are our main concern to study in this article.

Definition 1.2 Let us take an exact sequence :

0 −−−−→ M 0 ϕ−−−−→ M
ψ−−−−→ M 00 −−−−→ 0,(#-2)

where M 0, M and M 00 denote finite graded S-modules, and the maps ϕ and ψ are graded S-linear homo-
morphisms. The exact sequence (#-2) is called a pregeometric shell type extension (abbr. PGS-extension)
if for any non-negative integer q, the sequence :

0 −−−−→ TorSq (M
0, S/S+)

ϕ∗−−−−→ TorSq (M,S/S+)
ψ∗−−−−→ TorSq (M

00, S/S+) −−−−→ 0,(#-3)

induced from the sequence (#-2) after tensoring S/S+ is exact. In other words, the long Tor sequence
induced from the sequence (#-2) breaks into each short exact sequence, namely all the connecting homo-
morphisms are zero maps.

In this case, we also say that the module M 0 is a submodule of a pregeometric shell type of M (abbr.
PGS-submodule ofM) and the module M 00 is a quotient module of a pregeometric shell type of M (abbr.
PGS-quotient module of M).

Now we take finite graded S-modules M , L and a graded S-linear homomorphism ϕ : L→ M . Then
the homomorphism ϕ is called a monoPGS-homomorphism if for any non-negative integer q, the induced
homomorphism ϕ∗ : TorSq (L, S/S+) → TorSq (M,S/S+) is injective. Similarly, a homomorphism ψ :
M → L is called a epiPGS-homomorphism if for any non-negative integer q, the induced homomorphism
ψ∗ : TorSq (M,S/S+)→ TorSq (L, S/S+) is surjective.

The next claims on monoPGS-homomorphisms and epiPGS-homomorphisms are obvious but often
useful.

Lemma 1.3 Let M1, M2, M3 be finite graded S-modules and ϕ1 : M1 → M2, ϕ2 : M2 → M3 graded
S-linear homomorphisms. Then, we have the following properties.

(1.3.1) If the homomorphisms ϕ1 and ϕ2 are monoPGS-homomorphisms, then the composed homo-
morphism ϕ2 ◦ ϕ1 is also a monoPGS-homomorphism. On the other hand, if the composed
homomorphism ϕ2 ◦ ϕ1 is a monoPGS-homomorphism, then the homomorphism ϕ1 is also a
monoPGS-homomorphism.
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(1.3.2) If the homomorphisms ϕ1 and ϕ2 are epiPGS-homomorphisms, then the composed homomor-
phism ϕ2 ◦ ϕ1 is also an epiPGS-homomorphism. On the other hand, if the composed homo-
morphism ϕ2 ◦ϕ1 is an epiPGS-homomorphism, then the homomorphism ϕ2 is also an epiPGS-
homomorphism.

(1.3.3) If the short exact sequence: 0 → M1
ϕ1→ M2

ϕ2→ M3 → 0 splits, then the homomorphism ϕ1 is a
monoPGS-homomorphism and the homomorphism ϕ2 is an epiPGS-homomorphism.

Remark 1.4 In spite of the claim (1.3.3), there are many important non-splitting PGS-extensions in
our applications. One of the aims of this article is to clarify homologically hidden splitting structures of
PGS-extensions (cf. Theorem 2.6 (2.6.2)).

Let us see the relation among epiPGS-homomorphisms, monoPGS-homomorphisms and PGS-extensions.

Lemma 1.5 An epiPGS-homomorphism ψ :M → L is always surjective and induces a PGS-extension:

0 −−−−→ Ker(ψ) −−−−→ M
ψ−−−−→ L −−−−→ 0.(#-4)

Proof. Since in case of q = 0, the surjective condition on TorSq (M,S/S+)→ TorSq (L, S/S+) implies the

surjectivity of the induced map ψ : M ⊗ (S/S+) → L ⊗ (S/S+), which and Nakayama’s Lemma imply
the surjectivity of ψ.

Remark 1.6 On the other hand, a monoPGS-homomorphism ϕ : L → M is not always injective. For
example, we put M = S/S+, L = S and set the homomorphism ϕ to be the canonical quotient map
ϕ : L = S → M = S/S+, which is obviously not injective. Then, it is easy to check the injectivities of
TorSq (L, S/S+)→ TorSq (M,S/S+) for any non-negative integer q.

Here we should make a remark that there exists a surjective and non-isomorphic monoPGS-homomorphism
as the example above.

One of the reason why we admit non-injective monoPGS-homomorphisms is explained in Lemma

However, once we obtain a monoPGS-homomorphism, there is a canonical way to construct a PGS-
extension from this homomorphism which preserve almost all information on the Tor-groups and the
induced homomorphisms.

Lemma 1.7 Assume that a monoPGS-homomorphism ϕ : L → M is given. Then, there exists a PGS-
extension :

0 −−−−→ K 0 Φ−−−−→ K −−−−→ K/K0 −−−−→ 0(#-5)

such that for any non-negative integer q, there exist isomorphisms δ0 : TorSq+1(L, S/S+)
∼→ TorSq (K

0, S/S+)
and δ : TorSq+1(M,S/S+)

∼→ TorSq (K,S/S+), which bring us a compatibility of the induced homomor-
phisms ϕ∗ and Φ∗ :
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TorSq (K
0, S/S+)

Φ∗−−−−→ TorSq (K,S/S+)

∼= δ0
x⏐⏐ x⏐⏐δ ∼=

TorSq+1(L, S/S+) −−−−→
ϕ∗

TorSq+1(M,S/S+).

(#-6)

Moreover, if the monoPGS-homomorphism ϕ : L→M is surjective, we obtain a short exact sequence
0→ K/K0 → L→M → 0 which induces naturally a short exact sequence:

0 −−−−→ TorSq+1(L,S/S+)
ϕ∗−−−−→ TorSq+1(M,S/S+)

δ00−−−−→ TorSq (K/K
0, S/S+) −−−−→ 0.

(#-7)

On the other hand, if the monoPGS-homomorphism ϕ : L → M is injective, obviously the sequence

0→ L
ϕ→M →M/L→ 0 itself is a PGS-extension.

Proof. By the definition, for any non-negative integer q, the induced homomorphism ϕ∗ : TorSq (L, S/S+)→
TorSq (M,S/S+) is injective. In particular, the homomorphism ϕ : L⊗(S/S+)→M⊗ (S/S+) is injective,
which means that a system of minimal generators of L forms a part of a system of minimal generators
of M . Corresponding to those systems of minimal generators, we can take graded S-free modules F 0

and F with the surjective graded S-linear homomorphisms p0 : F 0 → L and p : F → M which induce
isomorphisms p0 : F 0 ⊗ (S/S+) ∼→ L⊗ (S/S+) and p : F ⊗ (S/S+) ∼→M ⊗ (S/S+), respectively.

Then, using the surjectivity of the homomorphism p : F → M and the projectivity of the graded
S-free module F 0, we obtain a graded S-linear lift Φ : F 0 → F of the homomorphism ϕ ◦ p0 : F 0 → M ,
namely p ◦ Φ = ϕ ◦ p0.

Since the monoPGS-homomorphism ϕ : L → M induces an injective S/S+-linear homomorphism
ϕ : L ⊗ (S/S+) → M ⊗ (S/S+), we see that Φ : F 0 ⊗ (S/S+) → F ⊗ (S/S+) is also injective. Let us
represent the homomorphism Φ and the homomorphism Φ by matrices A and A whose entries belong to
the polynomial ring S and to the residue field S/S+, respectively. Since the matrix A goes to the matrix
A via the canonical map S → S/S+, by considering determinants of minor square matrices of those
matrices, we see that rankS(F

0) ≥ rank(A) ≥ rank(A) = rankS/S+(F 0⊗ (S/S+)), which implies that all
the inequalities are the equalities. Thus the homomorphim Φ : F 0 → F is also injective. Moreover, the
injectivity of the homomorphism Φ shows that TorS1 (F/F

0, S/S+) = 0, which means that finite graded
S-module F 00 := F/F 0 is also S-free and therefore S-free submodule F 0 is a direct summand of F . We
put K := Ker[p : F →M ] and K 0 := Ker[p0 : F 0 → L]. Then the homomorphism Φ : F 0 → F naturally
induces a homomorphism Φ : K 0 → K and brings us an exact sequence (#-5), which is included in the
following exact commutative diagram:
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0 0x⏐⏐ x⏐⏐
L

ϕ−−−−→ M

p0
x⏐⏐ x⏐⏐p

0 −−−−→ F 0 Φ−−−−→ F −−−−→ F 00 −−−−→ 0x⏐⏐ x⏐⏐ x⏐⏐
0 −−−−→ K0 −−−−→

Φ
K −−−−→ K/K0 −−−−→ 0.x⏐⏐ x⏐⏐

0 0

(#-8)

Now we apply TorS∗ (−, S/S+) to the diagram (#-8) and get the compatibility (#-7), where the isomor-
phisms δ0 and δ are coming from the connecting homomorphisms of Tor-groups.

If the monoPGS-homomorphism ϕ is surjective, the free module F 00 in the diagram (#-8) is zero,
which induces an exact sequence 0→ K/K0 → L→M → 0 by Snake Lemma.

As the corollary of the proof of Lemma 1.7 above, we obtain a claim as follows.

Corollary 1.8 Let ϕ : L → M be a graded S-linear homomorphism whose induced homomorphism
ϕ : L⊗ (S/S+)→M ⊗ (S/S+) is injective, μ0 : F 0 → L and μ : F →M graded S-linear homomorphisms
from graded S-free modules F 0 and F which induce isomorphisms μ0 : F 0 ⊗ (S/S+) ∼→ L ⊗ (S/S+) and
μ : F ⊗ (S/S+) ∼→ M ⊗ (S/S+), respectively. Take any S-linear lift Φ : F 0 → F of ϕ : L → M , namely
μ ◦ Φ = ϕ ◦ μ0. Then F 0 is a direct summand of F via Φ.

Lemma 1.9 Let us take finite graded S-modulesM , L and a graded S-linear homomorphism ϕ : L→M .
Then, the following three conditions are equivalent.

(1.9.1) The homomorphism ϕ is an isomorphism.

(1.9.2) The homomorphism ϕ is a monoPGS-homomorphism and also an epiPGS-homomorphism.

(1.9.3) The induced homomorphisms ϕ∗ : TorSq (L, S/S+) → TorSq (M,S/S+) are isomorphic for q = 0
and q = 1.

Proof. The implications (1.9.1) ⇒ (1.9.2) ⇒ (1.9.3) are obvious. To show the implication (1.9.3) ⇒
(1.9.1), we take partial minimal graded S-free resolutions F 01 → F 00 → L → 0 and F1 → F0 → M → 0,
respectively. Then, from the homomorphism ϕ : L → M , we obtain S-linear lifts Φ0 : F

0
0 → F0 and

Φ1 : F
0
1 → F1, which bring us an exact commutative diagram :

F 01 −−−−→ F 00 −−−−→ L −−−−→ 0

Φ1

⏐⏐y Φ0

⏐⏐y ⏐⏐yϕ
F1 −−−−→ F0 −−−−→ M −−−−→ 0.

(#-9)
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The condition (1.9.3) is the same to say that the homomorphisms Φq : F
0
q ⊗ (S/S+)→ Fq ⊗ (S/S+) are

isomorphic for q = 0, 1. Using similar argument in the proof of Lemma 1.7, we see that the homomor-
phisms Φq are also isomorphic for q = 0, 1. Then, diagram chasing in the diagram (#-9) shows that the
homomorphism ϕ is isomorphic, namely the condition (1.9.1).

Remark 1.10 In Lemma 1.7, the induced PGS-extension 0 → K0 → K → K/K 0 → 0 loses only the
information on the part TorS0 (L, S/S+) → TorS0 (M,S/S+). One might wonder whether or not there

exists a PGS-extension 0 → L0
ψ→ M 0 → M 0/L0 → 0 with (S/S+)-isomorphisms αq : Tor

S
q (L, S/S+)

∼→
TorSq (L

0, S/S+) and βq : TorSq (M,S/S+)
∼→ TorSq (M

0, S/S+) such that the induced homomorphisms ψ∗
satisfy ψ∗ ◦ αq = βq ◦ ϕ∗.

If we assume that those (S/S+)-isomorphisms {αq}q and {βq}q are the induced homomorphisms of
the certain S-linear homomorphisms α : L → L0 and β : M → M 0 with β ◦ ϕ = ψ ◦ α, then, by Lemma
1.9, the S-linear homomorphisms α and β are isomorphic, which implies obviously the non-existece of
such a PGS-extension.

In case we assume only the existence of those (S/S+)-isomorphisms {αq}q and {βq}q, we have to
consider more carefully for showing the non-existece of such a PGS-extension. Let us recall the counter-
example in Remark 1.6. Since L = S, M = S/S+, and ϕ : L = S → M = S/S+ is the canonical
quotient map, we see that TorS0 (L

0, S/S+) ∼= S/S+, Tor
S
1 (L

0, S/S+) = 0, TorS0 (M
0, S/S+) ∼= S/S+,

and TorSN+1(M
0, S/S+) ∼= S/S+. Then the S-module L0 is generated by one element and S-free, namely

L0 ∼= S. Moreover, the S-moduleM 0 is also generated by one element and of homological dimension N+1,
or equivalently of depth zero. Thus we see that M 0 ∼= S/I and the maximal ideal S+ is an associated
prime of the ideal I. On the other hand, if the S-linear homomorphism ψ : L0 ∼= S → M 0 ∼= S/I is
injective, the zero ideal (0) is an associated prime of the ideal I, which means I = (0), which never has
the maximal ideal S+ as an associated prime. Thus we get a contradiction.

Let us see typical and important two examples (one of them is given as a lemma) where PGS-extensions
or monoPGS-homomorphisms appear.

Example 1.11 Let us take a complex projective subscheme X ⊆ P = PN (C) of dimension n > 0. Then,
for any intermediate closed subscheme W , namely X ⊆ W ⊆ P , the scheme W is a PG-shell of X (cf.
[11], [12]) if and only if the sequence : 0→ IW → IX → IX/IW → 0 is a PGS-extension. In particular,
if the subscheme X is non-degenerate and the scheme W is a variety of minimal degree, then the scheme
W is a PG-shell of X.

Lemma 1.12 Let M be a finite graded S-module and {f1, . . . fk} a (homogeneous) M -regular sequence.
Then, the canonical quotient homomorphism ϕ :M →M/Σki=1fiM is a monoPGS-homomorphism.

Proof. We just imitate the proof of Lemma 1.8 in [11]. By Lemma 1.7, we may assume k = 1 and set
f := f1. From the short exact sequence :

0 −−−−→ M
×f−−−−→ M

ϕ−−−−→ M/fM −−−−→ 0,(#-10)

we obtain an exact sequence

TorSq (M,S/S+)
×f−−−−→ TorSq (M,S/S+)

ϕ∗−−−−→ TorSq (M/fM,S/S+).(#-11)
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Since the Tor group TorS∗ (−, S/S+) is a S/S+-module and is anihilated by the element f ∈ S+, we obtain
what we wanted.

Corollary 1.13 Let X ⊆ W ⊆ P = PN (C) be closed subschemes. Assume that the subscheme W
is arithmetically Cohen-Macaulay and the sequence {F1, . . . , Fk|Fi ∈ H0(P,OP (mi))} is a OW -regular
sequence. Set the sheaf of ideal IY/W on the scheme W to be

IY/W := Im [
Lk

i=1 OW (−mi)
(F1,... ,Fk)−−−−−−−→ OW ](#-12)

and define a closed subscheme Y to be (|Supp(OW /IY/W )|, OW /IY/W ). If Y ⊆ X, then the scheme W
is a PG-shell of the scheme X.

Proof. Just using Lemma 1.3, Lemma 1.12, and the fact that there are natural ring homomorphisms
RW → RX → RY = RW /ΣFiRW . Here we need a bit of effort to show that the sequence {F1, . . . , Fk}
is also a RW -regular sequence.

§2 Several Results.
In this section, let us consider PGS-extensions more precisely.

Lemma 2.1 Take a short exact sequece of finite graded S-modules :

0 −−−−→ M1
ϕ−−−−→ M2

ψ−−−−→ M3 −−−−→ 0.(#-13)

Then, the following two conditions are equivalent.

(2.1.1) After tensoring S/S+ to the sequence (#-13), we still have an exact sequence :

0 −−−−→ M1 ⊗ (S/S+) ϕ−−−−→ M2 ⊗ (S/S+) ψ−−−−→ M3 ⊗ (S/S+) −−−−→ 0.(#-14)

(2.1.2) A short exact sequence :

0 −−−−→ M1/(S+ ·M1)
bϕ−−−−→ M2/(S+ ·M1)

bψ−−−−→ M3 −−−−→ 0(#-15)

splits after taking quotients of the modules in the sequence (#-13) by the submodule (S+ ·M1).

Proof. First we assume the condition (2.1.2). Then, tensoring (S/S+) to the splitting short exact
sequence (#-15), we obtain the short exact sequence (#-14).

Now we show the converse. Let us compare the sequence (#-15) with the sequence (#-14) in the
exact commutative diagram (#-16) below.

0 −−−−→ M1/(S+ ·M1)
bϕ−−−−→ M2/(S+ ·M1)

bψ−−−−→ M3 −−−−→ 0°°° f2

⏐⏐y ⏐⏐yf3
0 −−−−→ M1 ⊗ (S/S+) ϕ−−−−→ M2 ⊗ (S/S+) ψ−−−−→ M3 ⊗ (S/S+) −−−−→ 0

(#-16)
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Since the exact sequence (#-14) is that of the finite dimensional vector spaces on the field S/S+, we
have a S/S+-linear splitting homomorphism σ : M2 ⊗ (S/S+) → M1 ⊗ (S/S+), namely σ ◦ ϕ = 1M1

,

where the homomorphism 1M1
is the identity map of the module M1 := M1 ⊗ (S/S+). Now we putbσ := σ ◦ f2 : M2/(S+ ·M1) → M1 ⊗ (S/S+). Then bσ ◦ bϕ = σ ◦ f2 ◦ bϕ = σ ◦ ϕ = 1M1

, which means that
the homomorphism bσ is a splitting homomorphism of the sequence (#-15).

Lemma 2.2 Let us consider the following exact commutative diagram of graded S-modules :

0 0 0x⏐⏐ x⏐⏐ x⏐⏐
0 −−−−→ M 0 ϕ−−−−→ M

ψ−−−−→ M 00 −−−−→ 0

μ0
x⏐⏐ μ

x⏐⏐ μ00
x⏐⏐

0 −−−−→ F 0
η−−−−→ F −−−−→ F 00 −−−−→ 0

ν0
x⏐⏐ ν

x⏐⏐ ν00
x⏐⏐

0 −−−−→ K0 −−−−→
κ

K −−−−→
λ

K00 −−−−→ 0.x⏐⏐ x⏐⏐ x⏐⏐
0 0 0

(#-17)

Assume that the modules F 0, F and F 00 are S-free, and the sequence 0 → M 0 → M → M 00 −→ 0 is a
PGS-extension. Then, the sequence 0→ K0 → K → K 00 −→ 0 is also a PGS-extension.

Proof. Set q ≥ 1 and apply TorS∗ (−, S/S+) to the diagram (#-17) and get an exact commutative
diagram:

TorSq (F
0, S/S+) = 0 −−−−→ TorSq (F, S/S+) = 0 −−−−→ TorSq (F

00, S/S+) = 0x⏐⏐ x⏐⏐ x⏐⏐
TorSq (K

0, S/S+) −−−−→ TorSq (K,S/S+) −−−−→ TorSq (K
00, S/S+)

∼=
x⏐⏐ ∼=

x⏐⏐ ∼=
x⏐⏐

0 −−−−→ TorSq+1(M
0, S/S+) −−−−→ TorSq+1(M,S/S+) −−−−→ TorSq+1(M

00, S/S+) −−−−→ 0x⏐⏐ x⏐⏐ x⏐⏐
TorSq+1(F

0, S/S+) = 0 −−−−→ TorSq+1(F, S/S+) = 0 −−−−→ TorSq+1(F
00, S/S+) = 0.

(#-18)

Thus we get a short exact sequence 0 → TorSq (K
0, S/S+) → TorSq (K,S/S+) → TorSq (K

00, S/S+) → 0

for q ≥ 1. In particular, we have the surjectivity of TorS1 (K,S/S+) → TorS1 (K
00, S/S+), which and the

long Tor exact sequence induced by tensoring S/S+ to the sequence 0→ K 0 → K → K 00 −→ 0 imply the
exactness of 0→ TorS0 (K

0, S/S+)→ TorS0 (K,S/S+)→ TorS0 (K
00, S/S+)→ 0.

Let us consider the converse implication of Lemma 2.2.

9
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Theorem 2.3 Recall the diagram (#-17). Assume that the modules F 0, F and F 00 are S-free, and the
sequence 0 → K0 → K → K 00 −→ 0 is a PGS-extension. Moreover, suppose ν(K) ⊆ (S+ · F ), or
equivalently the homomorphism induces an isomorphism μ : F ⊗ (S/S+) ∼→ M ⊗ (S/S+). Then the
sequence 0→M 0 →M →M 00 −→ 0 is also a PGS-extension.

Proof. First we set q ≥ 2 and apply TorS∗ (−, S/S+) to the diagram (#-17) and get an exact commutative
diagram:

TorSq−1(F
0, S/S+) = 0 −−−−→ TorSq−1(F, S/S+) = 0 −−−−→ TorSq−1(F

00, S/S+) = 0x⏐⏐ x⏐⏐ x⏐⏐
0 −−−−→ TorSq−1(K

0, S/S+) −−−−→ TorSq−1(K,S/S+) −−−−→ TorSq−1(K
00, S/S+) −−−−→ 0

∼=
x⏐⏐ ∼=

x⏐⏐ ∼=
x⏐⏐

TorSq (M
0, S/S+) −−−−→ TorSq (M,S/S+) −−−−→ TorSq (M

00, S/S+)x⏐⏐ x⏐⏐ x⏐⏐
TorSq (F

0, S/S+) = 0 −−−−→ TorSq (F, S/S+) = 0 −−−−→ TorSq (F
00, S/S+) = 0,

(#-19)

which brings us the short exact sequence 0→ TorSq (M
0, S/S+)→ TorSq (M,S/S+)→ TorSq (M

00, S/S+)→
0 for q ≥ 2. The remaining cases are q = 0 and q = 1. From the long Tor exact sequence induced by
tensoring S/S+ to the sequence 0 → M 0 → M → M 00 −→ 0, it is enough to show the injectivity of the
induced homomorphism ϕ :M 0 ⊗ S/S+ →M ⊗ S/S+. Now we tensor S/S+ to the diagram (#-17), use
the assumption ν(K) ⊆ (S+ · F ), and get an exact commutative diagram:

0 0 0x⏐⏐ x⏐⏐ x⏐⏐
M 0 ⊗ (S/S+) ϕ−−−−→ M ⊗ (S/S+) ψ−−−−→ M 00 ⊗ (S/S+) −−−−→ 0

μ0
x⏐⏐ μ

x⏐⏐∼= μ00
x⏐⏐

0 = TorS1 (F
00, S/S+) −−−−→ F 0 ⊗ (S/S+) η−−−−→ F ⊗ (S/S+) −−−−→ F 00 ⊗ (S/S+) −−−−→ 0

ν0
x⏐⏐ 0=ν

x⏐⏐ ν00
x⏐⏐

0 −−−−→ K0 ⊗ (S/S+) −−−−→
κ

K ⊗ (S/S+) −−−−→
λ

K00 ⊗ (S/S+) −−−−→ 0.

(#-20)

Since ν = 0, we have η◦ν 0 = 0. Using the injectivity of η, we see ν0 = 0, or equivalently the homomorphism
μ0 is an isomorphism. Now the injectivity of ϕ is obvious from the injectivity of η.

Corollary 2.4 In the exact commutative diagram (#-17), we assume that the modules F 0, F and F 00

are S-free, and ν(K) ⊆ (S+ · F ). Then the sequence 0 → M 0 → M → M 00 −→ 0 is a PGS-extension if
and only if the sequence 0→ K 0 → K → K00 −→ 0 is a PGS-extension.

10
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Remark 2.5 In Theorem 2.3, the assumption ν(K) ⊆ (S+ · F ) is crucial. Without this assumption, we
can construct a counter-example, which will be given in Example 3.2.

Let us give a criterion for PGS-extensions in terms of minimal graded S-free resolutions.

Theorem 2.6 Take a short exact sequence

0 −−−−→ M 0 ϕ−−−−→ M
ψ−−−−→ M 00 −−−−→ 0(#-21)

of finite graded S-modules. Then, the following three conditions are equivalent.

(2.6.1) The sequence (#-21) is a PGS-extension.

(2.6.2) First we set K0
0 := M

0, K0 := M , K
00
0 := M

00 ϕ0 := ϕ and ψ0 := ψ. Define inductively a short

exact sequence 0 → K0
k

ϕk→ Kk
ψk→ K 00

k → 0 for any k ≥ 0 as follows. Take any short exact

sequence 0 → F 0k
Φk→ Fk

Ψk→ F 00k → 0 of graded S-free modules F 0k, Fk and F
00
k which forms an

exact commutative diagram

0 −−−−→ K0
k

ϕk−−−−→ Kk
ψk−−−−→ K 00

k −−−−→ 0

μ0k

x⏐⏐ μk

x⏐⏐ μ0k
0
x⏐⏐

0 −−−−→ F 0k
Φk−−−−→ Fk

Ψk−−−−→ F 00k −−−−→ 0

(#-22)

where the homomorphisms μ0k : F
0
k → K 0

k, μk : Fk → Kk, and μ
00
k : F

00
k → K 00

k are surjective.
Now we set K0

k+1 := Ker(μ0k), Kk+1 := Ker(μk), K
00
k+1 := Ker(μ00k), ϕk+1 := Φk|K0

k+1
and

ψk+1 := Ψk|Kk+1
, which induces a short exact sequence 0 → K0

k+1

ϕk+1→ Kk+1
ψk+1→ K 00

k+1 → 0

by Snake Lemma. Then, we always have a short exact sequence 0 → K0
k ⊗ (S/S+)

ϕk→ Kk ⊗
(S/S+)

ψk→ K00
k ⊗ (S/S+)→ 0 for any k ≥ 0, or equivalently, the sequence 0→ K0

k/(S+ ·K0
k)
bϕk→

Kk/(S+ ·K0
k)
bψk→ K 00

k → 0 always splits for any k ≥ 0 (cf. Lemma 2.1).
(2.6.3) There exist minimal graded S-free resolutions F0• → M 0, F• → M , F00• → M 00, and complex

homomorphisms Φ• : F0• → F• and Ψ• : F• → F00• induced by ϕ and ψ which satisfy that the
sequence 0→ F 0k

Φk→ Fk
Ψk→ F 00k → 0 is exact for any k ≥ 0.

Proof. First we show the implication (2.6.3)⇒ (2.6.1). Since all of the differential maps μ0k, μk, μ
00
k of the

minimal graded S-free resolutions F0• = {(F 0k,μ0k)}k≥0, F• = {(Fk,μk)}k≥0, and F00• = {(F 00k ,μ00k)}k≥0,
are killed by tensoring S/S+, for any q ≥ 0, we obtain an exact commutative diagram

0 −−−−→ F 0q ⊗ (S/S+)
Φq−−−−→ Fq ⊗ (S/S+) Ψq−−−−→ F 00q ⊗ (S/S+) −−−−→ 0°°° °°° °°°

TorSq (M
0, S/S+) −−−−→

ϕ∗
TorSq (M,S/S+) −−−−→

ψ∗
TorSq (M

00, S/S+),

(#-23)

which shows that the sequence (#-21) is a PGS-extension.
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Next we see the implication (2.6.1) ⇒ (2.6.2). It is enough to apply Lemma 2.2 inductively on k and

see that the sequence . 0→ K0
k

ϕk→ Kk
ψk→ K00

k → 0 a PGS-extension.
The remain is to show the implication (2.6.2)⇒ (2.6.3). We will construct inductively minimal graded

S-free resolutions F0• → M 0, F• → M , F00• → M 00, and complex homomorphisms Φ• : F0• → F• and
Ψ• : F• → F00• simultaneously. For the modules K0

0 =M
0 and K0 =M , take graded S-free modules F

0
0,

F0, surjective graded S-linear homomorphisms μ
0
0 : F

0
0 → M 0, μ0 : F0 → M which induce isomorphisms

μ00 : F
0
0 ⊗ (S/S+) ∼→ M 0 ⊗ (S/S+), μ0 : F0 ⊗ (S/S+) ∼→ M ⊗ (S/S+) and an S-linear lift Φ0 : F 00 → F0

of the homomorphism ϕ. By the argument in the proof of Lemma 1.7, we see that the quotient graded
S-module F 000 := F0/Φ0(F

0
0) is S-free and the module F

0
0 is a direct summand of F0. Set Ψ0 : F0 → F 000 to

be the canonical quotient homomorphism. Then we obtain naturally a graded S-linear homomorphism
μ000 : F

00
0 → K 00

0 =M
00 which forms an exact commutative diagram

0 −−−−→ M 0 ϕ−−−−→ M
ψ−−−−→ M 00 −−−−→ 0

μ00

x⏐⏐ μ0

x⏐⏐ μ000

x⏐⏐
0 −−−−→ F 00

Φ0−−−−→ F0
Ψ0−−−−→ F 000 −−−−→ 0.

(#-24)

Since the induced homomorphisms μ00 and μ0 are isomorphic, the homomorphism μ000 is also isomorphic by
using the diagram (#-24) above after tensored with S/S+. Then it is easy to see that the homomorphism
μ000 is surjective, K0

1 ⊆ S+ · F 00, K1 ⊆ S+ · F0 and K 00
1 ⊆ S+ · F 000 . Use the assumption (2.6.2), replace

M 0, M , M 00 with K0
1, K1, K

00
1 , respectively and apply the same argument. Then we obtain an exact

commutative diagram

0 −−−−→ K 0
1

ϕ1−−−−→ K1
ψ1−−−−→ K 00

1 −−−−→ 0

μ01

x⏐⏐ μ1

x⏐⏐ μ001

x⏐⏐
0 −−−−→ F 01

Φ1−−−−→ F1
Ψ1−−−−→ F 001 −−−−→ 0

(#-25)

with the property that the induced homomorphisms μ01, μ1 and μ001 are isomorphic. We continue this
inductive argument with replacing K 0

k, Kk, K
00
k by K

0
k+1, Kk+1, K

00
k+1, respectively, and obtain minimal

graded S-free resolutions F0• → M 0, F• → M , F00• → M 00, and complex homomorphisms Φ• : F0• → F•
and Ψ• : F• → F00• with the desired properties.

Remark 2.7 In classical text books on homological algebra (cf. e.g. [1], [2], [6], [7]), for a given short

exact sequence of (S-)modules : 0 → M 0 ϕ→ M
ψ→ M 00 → 0, we often construct simultaneous projective

resolutions, namely projective resolutions F0• →M 0, F• →M , F00• →M 00, and complex homomorphisms
Φ• : F0• → F• and Ψ• : F• → F00• which are compatible with the homomorphisms ϕ and ψ and the

sequence 0 → F 0k
Φk→ Fk

Ψk→ F 00k → 0 is exact for any k ≥ 0. Following to this standard construction, we
can make the S-free resolutions F0• → M 0 and F00• → M 00 minimal. However, as we saw in Theorem
2.6, we can not always make the middle part F• →M minimal.

Definition 2.8 For a PGS-extension 0 → M 0 → M → M 00 → 0, by Theorem 2.6, we obtain minimal
graded S-free resolutions F0• → M 0, F• → M , F00• → M 00, and complex homomorphisms Φ• : F0• →
F• and Ψ• : F• → F00• as in the condition (2.6.3). The combination of these three minimal graded

S-free resolutions and two complex homomorphisms 0 → F0•
Φ•→ F•

Ψ•→ F00• → 0 is called simply a
simultaneous minimal graded S-free resolutions of the PGS-extension.
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The following result is obvious but shows the importance of monoPGS-homomorphisms and epiPGS-
homomorphisms.

Lemma 2.9 Let us take finite graded S-modules L,M , and a graded S-linear homomorphism ϕ : L→M .
Then, we have the following facts.

(2.9.1) If the homomorphism ϕ is a monoPGS-homomorphism, then there are an inequality of the ho-
mological dimensions : hdS(L) ≤ hdS(M), an inequality of depth : depthS(L) ≥ depthS(M),
and an inequality of Castelnuovo-Mumford regularity : regCM (L) ≤ regCM (M). In this case, if
the module M is S-free, then the module L is also S-free and is a direct summand of M .

(2.9.2) If the homomorphism ϕ is a epiPGS-homomorphism, then there are an inequality of the homo-
logical dimensions : hdS(L) ≥ hdS(M), an inequality of depth : depthS(L) ≤ depthS(M), and
an inequality of Castelnuovo-Mumford regularity : regCM (L) ≥ regCM (M). In this case, if the
module L is S-free, then the module M is also S-free.

Proof. Take minimal graded S-free resolutions FL• → L and FM• → M of the modules L and M ,
respectively. If the homomorphism ϕ is a monoPGS-homomorphism, then the complex FL• is a subcomplex
of FM• by Lemma 1.7 and Theorem 2.6. Also if the homomorphism ϕ is an epiPGS-homomorphism, then
the complex FM• is a quotient complex FL• by Lemma 1.5 and Theorem 2.6. Thus the inequality of the
homological dimensions is obvious. On the inequality of depth, apply the Auslander-Buchsbaum formula
(cf. [8]). To get the inequality of Castelnuovo-Mumford regularity, use Eisenbud-Goto criterion (cf. [3]).

Lemma 2.10 Let M be a finite graded S-modules, L = ⊕Sei a graded S-free module of finite rank,
and ϕ : L → M , ψ : M → L S-linear homomorphisms. Then, the homomorphism ϕ is a monoPGS-
homomorphism if and only if the induced homomorphism ϕ : L ⊗ (S/S+) → M ⊗ (S/S+) is injective,
namely the set {ϕ(ei)}i forms a part of minimal generators of M . The homomorphism ψ is an epiPGS-
homomorphism if and only if ψ :M ⊗ (S/S+)→ L⊗ (S/S+) is surjective, namely the homorphism ψ is
surjective, or equivalently the module has a direct summand which is isomorphic to L via the homomor-
phism ψ.

Proof. Obvious.

Theorem 2.11 Let us consider a short exact sequence

0 −−−−→ M 0 ϕ−−−−→ M
ψ−−−−→ M 00 −−−−→ 0(#-26)

of finite graded S-modules. Then, the sequence (#-26) is a PGS-extension if and only if the induced
sequence

0 −−−−→ ExtqS(M
00, S/S+)

ψ∗−−−−→ ExtqS(M,S/S+)
ϕ∗−−−−→ ExtqS(M

0, S/S+) −−−−→ 0(#-27)

is exact for any q ≥ 0.

Proof. First we assume that the sequence (#-26) is a PGS-extension. Then, by Theorem 2.6, we

obtain a simultaneous minimal graded S-free resolutions 0 → F0•
Φ•→ F•

Ψ•→ F00• → 0 of the PGS-
extension. Let us denote more precisely these minimal graded S-free resolutions by F0• = {(F 0k,μ0k)}k≥0,
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F• = {(Fk,μk)}k≥0, and F00• = {(F 00k ,μ00k)}k≥0. To get the long Ext sequence induced from (#-26), we
apply the functor HomS(−, S/S+) to this simultaneous minimal graded S-free resolutions. Then all of
the differential maps μ0∗k, μ

∗
k, μ

00∗
k of the complexes HomS(F0•, S/S+) = {(HomS(F

0
k, S/S+),μ

0∗
k)}k≥0,

HomS(F•, S/S+) = {(HomS(Fk, S/S+),μ
∗
k)}k≥0, andHomS(F00•, S/S+) = {(HomS(F

00
k , S/S+),μ

00∗
k)}k≥0,

are killed. Thus we have an exact commutative diagram

0 −−−−→ HomS(F
00
q , S/S+)

Ψ∗q−−−−→ HomS(Fq, S/S+)
Φ∗q−−−−→ HomS(F

0
q, S/S+) −−−−→ 0°°° °°° °°°

ExtqS(M
00, S/S+) −−−−→

ψ∗
ExtqS(M,S/S+) −−−−→

ϕ∗
ExtqS(M

0, S/S+),

(#-28)

which implies the exactness of (#-27).
To show the implication of the converse direction, we assume that the exactness of (#-27) for any

q ≥ 0 holds. Tensoring S/S+ to the sequence (#-26), we obtain

M 0 =M 0 ⊗ (S/S+) ϕ−−−−→ M =M ⊗ (S/S+) ψ−−−−→ M 00 =M 00 ⊗ (S/S+) −−−−→ 0.(#-29)

Let us see that the homomorphism ϕ is injective. Recall the exactness (#-27) in the case q = 0 :

0 −−−−→ HomS(M
00, S/S+)

ψ∗−−−−→ HomS(M,S/S+)
ϕ∗−−−−→ HomS(M

0, S/S+) −−−−→ 0°°° °°° °°°
0 −−−−→ HomS(M 00, S/S+)

ψ
∨

−−−−→ HomS(M,S/S+)
ϕ ∨−−−−→ HomS(M 0, S/S+),

(#-30)

where the symbols ϕ ∨ and ψ
∨
denotes the homomorphisms induced from the homomorphisms ϕ and

ψ in the diagram (#-29). The diagram (#-30) shows the surjectivity of the homomorphism ϕ ∨. Since
the modules M 0 ⊗ (S/S+) and M ⊗ (S/S+) are the finite dimensional vector spaces over the field S/S+,
taking duals over the field S/S+, we obtain the injectivity of the homomorphism ϕ = ϕ ∨∨.

In case that the module M 0 is S-free, namely the homological dimension hdS(M 0) is zero, by Lemma
2.10, the injectivity of the homomorphism ϕ shows that the injective homomorphism ϕ : M 0 → M is a
monoPGS-homomorphism, which implies the sequence (#-26) is a PGS-extension.

Now we will proceed by induction on h0 := hdS(M 0) and assume that h0 ≥ 1 and our Theorem holds if
hdS(M

0) ≤ h0 − 1. Since we have already proven that the sequence 0→M 0 ⊗ (S/S+) ϕ→M ⊗ (S/S+) ψ→
M 00 ⊗ (S/S+) → 0 is exact, applying the similar argument for the implication (2.6.2) ⇒ (2.6.3) in the
proof of Theorem 2.6, we obtain an exact commutative diagram
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0 0 0x⏐⏐ x⏐⏐ x⏐⏐
0 −−−−→ M 0 ϕ−−−−→ M

ψ−−−−→ M 00 −−−−→ 0

μ00

x⏐⏐ μ0

x⏐⏐ μ000

x⏐⏐
0 −−−−→ F 00

Φ0−−−−→ F0
Ψ0−−−−→ F 000 −−−−→ 0

ν00

x⏐⏐ ν0

x⏐⏐ ν000

x⏐⏐
0 −−−−→ K 0

1
ϕ1−−−−→ K1

ψ1−−−−→ K 00
1 −−−−→ 0,x⏐⏐ x⏐⏐ x⏐⏐

0 0 0

(#-31)

where the modules F 00, F0 and F
00
0 are S-free and the induced homomorphisms μ

0
0, μ0 and μ

00
0 from the

homomorphisms μ00, μ0 and μ000 after tensoring S/S+ to the diagram (#-31) are isomorphic, the symbols
ν00, ν0, and ν

00
0 denote inclusion homomorphisms. Applying the functor HomS(−, S/S+) to the diagram

(#-31) and using the similar argument in the proof of Lemma 2.2 with replacing TorS∗ (−, S/S+) by
Ext∗S(−, S/S+), we see that for any q ≥ 0,

ExtqS(K
00
1 , S/S+)

ψ∗1−−−−→ ExtqS(K1, S/S+)
ϕ∗1−−−−→ ExtqS(K

0
1, S/S+)

∼=
⏐⏐yδ0 ∼=

⏐⏐yδ ∼=
⏐⏐yδ00

0 −−−−→ Extq+1S (M 00, S/S+)
ψ∗−−−−→ Extq+1S (M,S/S+)

ϕ∗−−−−→ Extq+1S (M 0, S/S+) −−−−→ 0,

(#-32)

which implies that the sequence 0 → K0
1
ϕ1→ K1

ψ1→ K 00
1 → 0 has the property of the exactness (#-27)

for any q ≥ 0. Since hdS(K
0
1) = hdS(M

0) = h0 − 1, our induction hypothesis tells that the sequence
0 → K 0

1 → K1 → K00
1 → 0 is a PGS-extension. Then we apply Theorem 2.3 and see that the sequence

(#-26) is also a PGS-extension.

Corollary 2.12 Recall the short exact sequence (#-26) of finite graded S-modules. Take the extension
class ε ∈ Ext1S(M 00,M 0) of this sequence. Then, the sequence (#-26) is a PGS-extension if and only if
for any class γ ∈ ExtqS(M 0, S/S+), the element γ ◦ ε ∈ Extq+1S (M 00, S/S+) is zero.

§3 Examples.
In this section, we give two counter-examples against naive expectations on monoPGS-homomorphisms
and on PGS-extensions.

The highest non-zero Tor-group (or Ext-group) often plays a dominant role in homological phenomena
of commutative ring theory. For example, take a noetherian local ring (A,m, k) and a finite graded A-
module M , then the equality hdA(M) = max{ q |TorAq (M,k) 6= 0} holds. Thus one might have a naive
expectation as follows.
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Working Problem 3.1 Take a finite graded S-module M and its graded S-submodule M 0. Set r :=
hdS(M

0), and ϕ : M 0 ,→ M to be the inclusion homomorphism, and assume that the induced homomor-
phism ϕ∗ : TorSr (M

0, S/S+)→ TorSr (M,S/S+) is injective. Then is the module M
0 a PGS-submodule of

M ? (In another words, is the sequence 0→M 0 →M →M/M 0 → 0 a PGS-extension ?)

Now we give a counter example to this naive expectation, namely Working Problem 3.1. This example
gives also a counter-example desired in Remark 2.5

Example 3.2 Let us consider the twisted cubic curve X := P1(C) 3 [s : t] 7−→ [x : y : z : w] = [s3 :
s2t : st2 : t3] ∈ P3(C) = Proj(S) = P where S = C[x, y, z, w] and a closed subscheme Y := {[1 : 0 : 0 :
0], [0 : 0 : 0 : 1]} which is two points on X. Set M 0 := IX and M := IY , namely M 0 = (f1, f2, f3)S and
M = (g1, g2, g3)S where f1 := xz − y2, f2 := xw − yz, f3 := yw − z2, g1 := y, g2 := z, g3 := xw. Then,
it is well-known that the module M 0 has the minimal graded S-free resolution F0• →M 0 :

0 −−−−→ F 01 = ⊕2j=1S[τj ]
μ01−−−−→ F 00 = ⊕3i=1S[fi]

μ00−−−−→ M 0 −−−−→ 0,(#-33)

where τ1 = w[f1]− z[f2] + y[f3] ∈ F 00 and τ2 = z[f1]− y[f2] + x[f3]. It shows us that hdS(M 0) = 1.
Since the scheme Y is a complete intersection, the module M has the Koszul resolution as its minimal

graded S-free resolution fF• →M :

0 −−−−→ fF2 = S[g1] ∧ [g2] ∧ [g3] −−−−→ fF1 = L
1≤i<j≤3

S[gi] ∧ [gj ] −−−−→ fF0 = 3L
i=1

S[gi]

−−−−→ M −−−−→ 0.

(#-34)

However, for later use, by adding an acyclic S-free comlex, we expand this resolution to a non-minimal
free resolution F• →M :

0 −−−−→ F2
μ2−−−−→ F1

μ1−−−−→ F0
μ0−−−−→ M −−−−→ 0,(#-35)

where F0 := fF0 ⊕ 3M
j=1

S[fj ], F1 := fF1 ⊕ 3M
k=1

S[hj ], F2 := fF2, and h1 = [f1] − x[g2] + y[g1], h2 =

[f2]− [g3] + z[g1], h3 = [f3]− w[g1] + z[g2]. Then we construct a complex homomorphism Φ• : F0• → F•
induced from the inclusion homomorphism ϕ : M 0 → M . The homomorphism Φ0 : F

0
0 → F0 is defined

naturally, namely Φ0([fi]) = [fi]. The homomorphism Φ1 : F
0
1 → F1 is defined as follows.

Φ1([τ1]) = −[g2] ∧ [g3]− z[g1] ∧ [g2] + w[h1]− z[h2] + y[h3]
Φ1([τ2]) = −[g1] ∧ [g3] + z[h1]− y[h2] + x[h3](#-36)

Using TorS1 (M
0, S/S+) = H1(F0• ⊗ (S/S+)) and TorS1 (M,S/S+) = H1(F• ⊗ (S/S+)), we see that

TorS1 (M
0, S/S+) ∼=

2L
i=1

(S/S+)[τi]

TorS1 (M,S/S+)
∼= L

1≤j<k≤3
(S/S+)[gj ] ∧ [gk].

(#-37)
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Thus, from the formula (#-36), the induced homomorphism ϕ∗ : TorS1 (M
0, S/S+) → TorS1 (M,S/S+)

is described as ϕ∗([τ1]) = −[g2] ∧ [g3] and ϕ∗([τ2]) = −[g1] ∧ [g3], which implies the injectivity of ϕ∗ :
TorS1 (M

0, S/S+)→ TorS1 (M,S/S+).
On the other hand, the minimal generators {f1, f2, f3} of the module M 0 does not form a part of

minimal generators of M , which means that ϕ∗ : TorS0 (M 0, S/S+) → TorS0 (M,S/S+) is not injective,
namely the sequence 0→M 0 →M →M/M 0 → 0 is not a PGS-extension.

Next, using this example, we give also a counter-example for the comment in Remark 2.5. Put S-
modules K0 := Ker(μ00), K := Ker(μ0), and an injective S-linear homomorphism κ := Φ0|K0 : K0 → K.

Then we have a short exact sequence 0 → K0 κ→ K → K/K0 → 0. From the S-free resolutions (#-33)
and (#-35), we have

0 −−−−→ F 01
μ01−−−−→∼= K0 −−−−→ 0

Φ1

⏐⏐y ⏐⏐yκ
0 −−−−→ F2

μ2−−−−→ F1
μ1−−−−→ K −−−−→ 0.

(#-38)

After tensoring S/S+ to the diagram (#-38), the homomorphism μ2 is zero, and therefore

⊕2j=1(S/S+)[τj ] = F 01 ⊗ (S/S+)
μ01−−−−→∼= K 0 ⊗ (S/S+)

Φ1

⏐⏐y ⏐⏐yκL
1≤i<j≤3

(S/S+)[gi] ∧ [gj ]⊕
3L

k=1

(S/S+)[hj ] = F1 ⊗ (S/S+) μ1−−−−→∼= K ⊗ (S/S+).

(#-39)

Since the module K 0 is S-free by the diagram (#-38) and the homomorphism κ is injective by the diagram

(#-39) and by the formula (#-36), Lemma 2.10 tells us that the sequence 0→ K0 κ→ K → K/K0 → 0 is
a PGS-extension. However the sequence 0→M 0 →M →M/M 0 → 0 is not a PGS-extension as we saw
above.

Remark 3.3 In the argument on the sequence 0 → K0 κ→ K → K/K 0 → 0 in Example 3.2 above, if
we replace the non-minimal S-free resolution (#-35) F• → M by the minimal S-free resolution (#-34)fF• →M , then we lose the condition that the S-free module F 00 is a direct summand of the S-free module
F0 via the homomorphism Φ0.

From Lemma 1.9, one might have a question as follows. For an S-linear homomorphism ϕ : L → M
of finite graded S-modules, if the induced homomorphisms ϕ∗ : TorSq (L, S/S+) → TorSq (M,S/S+) is
injective for q = 0, 1, then is the homomorphism ϕ always a monoPGS-homomorphism ?

The answer is negative as we see in the next example.

Example 3.4 Recall the twisted cubic curve X, its eqations {f1, f2, f3}, and the relations of these equa-
tions {τ1, τ2} in Example 3.2. Set M := RX = S/IX = S/(f1, f2, f3)S and L := S/(f1, f2)S. Let us
consider a natural S-linear homomorphism ϕ : L→M .

Replacing “→ M 0 → 0” in (#-33) by “→ S → RX = M → 0”, we obtain a minimal graded S-
free resolution FM• → M . Since the ring S/(f1, f2)S is a complete intersection, the Koszul complex for
{f1, f2} gives a minimal graded S-free resolution FL• → L of L. In particular, FM2 = ⊕2i=1S[τi] and FL2 =
S[f1]∧ [f2]. Since f1[f2]− f2[f1] = −xτ1+ yτ2 in FM1 , a complex homomorphism Φ• : FL• → FM• induced
from the homomorphism ϕ is given by Φ0(1S) = 1S, Φ1([fi]) = [fi], and Φ2([f1] ∧ [f2]) = −x[τ1] + y[τ2].
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Then, for q = 0, ϕ∗ = Φ0 : S/S+ ∼= TorS0 (L, S/S+)
∼=→ TorS0 (M,S/S+)

∼= S/S+, and for q = 1,
ϕ∗ := Φ1 : Tor

S
1 (L, S/S+)

∼= ⊕2i=1(S/S+)[fi] → TorS1 (M,S/S+)
∼= ⊕3i=1(S/S+)[fi], which shows the

injectivity of the induced homomorphism ϕ∗ for q = 0 and q = 1.
On the other hand, for q = 2, the induced homomorphism ϕ∗ = Φ2 : Tor

S
2 (L, S/S+)

∼= (S/S+)[f1] ∧
[f2] → TorS2 (M,S/S+)

∼= ⊕2i=1(S/S+)[τi] is the zero homomorphism, and therefore not injective, which
means that the homomorphism ϕ is not a monoPGS-homomorphism.

References
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[4] A. Grothendieck: Éléments de Géométrie Algébrique, Chap. I ∼ IV, Publ.I.H.E.S., 4, 8, 11,17,20,
24, 28, 32, (1964 ∼ 1967).

[5] R. Hartshorne : Algebraic Geometry, GTM52, Springer-Verlag, (1977).

[6] P. J. Hilton and U. Stammbach : A Course in Homological Algebra 2nd ed., Graduate Text in
Mathematics 4, Springer-Verlag, (1971, 1997).

[7] Y. Kawada : Homology Daisuu (in Japanese), Iwanami Kiso Suugaku Sensho, Iwanami Shoten,
(1990).

[8] H. Matsumura: Commutative Ring Theory, C.S.A.M. 8, Cambridge University Press, (1986).

[9] M. Nagata: Local Rings, Interscience Tracts in Pure & Applied Math. 13, J. Wiley, (1962).
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