28

滴状凝縮における初生液滴の発生遅れ時間に関する検討*

細川 力・ 白岩 寛之

機械系工学専攻

Study on Delay Time from Vapor to Initial Droplet

under Dropwise Condensation

Tsutomu HOSOKAWA and Hiroyuki SHIRAIWA Department of Mechanical and System Engineering

Abstract

Recently, the development of an efficient and highly effective heat exchanger is desired from the viewpoint of the energy saving and the saving resource. In the surface heat exchanger that has been put to practical use now, the condensation form of the vapor on the condensing surface is filmwise condensation, which is occurred when the condensing surface is wet. On the other hand, when the condensing surface is not wet, dropwise condensation is occurred. It is clarified that the heat transfer coefficient in dropwise condensation greatly influences the heat transfer characteristics. And a quantitative relationship between the behavior of the condensate droplets and heat transfer coefficient of dropwise condensation phenomenon is extremely complex. Then, the authors have investigated the relationship between the behavior of the droplets and heat transfer in dropwise condensation. In dropwise condensation, an initial droplet formation is one of the important mechanisms for the heat transfer. And, the authors considered a delay time of an initial droplet and proposed the calculation model for the phenomenon. As the delay time was larger, the heat transfer decreased. Furthermore, it was found that the effect of the delay time on the heat transfer was more significant with larger heat flux.

Key Words: Calculation, Dropwise Condensation, Initial Droplet, Delay Time, Heat Transfer

記号の説明

b	:滴の接触面直径	[m]	t _c	:被覆時間	[s]
d	:滴径	[m]	t _d	: 成長時間	[s]
d_0	:凝縮滴の離脱滴径	[m]	t _e	:遅れ時間	[s]
g	:重力加速度	[m/s ²]	ts	:掃除周期	[s]
Η	:相対局所熱伝達率	[-]	t_0	:離脱滴の成長時間	[s]
H _m	: 相対平均熱伝達率	[-]	U	: 滴の落下速度	[m/s]
h	:局所熱伝達率	$[kW/(m^2 \cdot K)]$	X	:伝熱面上端からの距離	[m]
h _d	: 成長時間 t _d 間の平均熱伝達率	$[kW/(m^2 \cdot K)]$	ß	: 式(2)中の定数	[-]
h_0	:成長時間 t ₀ 間の平均熱伝達率	$[kW/(m^2 \cdot K)]$	γ	: 式(2)中の定数	[-]
М	: 滴の質量	[kg]	θ_m	:滴の平均接触角	[rad]
q	: 熱流束	$[kW/m^2]$	μ	: 粘度	[Pa·s]
S	:領域	[s]	ρ	:密度	[kg/m ³]
t	:時間	[-]	σ	: 表面張力	[N/m]

*日本機械学会関西支部第79期定時総会講演会において発表(2004年3月)

1. はじめに

近年,省エネルギー,省資源の立場から高性能,高効率の熱交換器の開発が望まれている.現在実用化されて いる表面式熱交換器において伝熱表面への気体の凝縮形態は,伝熱表面がぬれやすい場合に生じる膜状凝縮であ る.一方,伝熱表面がぬれにくい場合には滴状凝縮が見られ,このときの熱伝達率は膜状凝縮の場合よりも著し く大きくなることが明らかにされている.しかし,滴状凝縮における凝縮液滴の挙動は伝熱性能に重要な影響を およぼすが,その現象は極めて複雑であり,凝縮液滴の挙動と滴状凝縮熱伝達率との定量的な関係についてはい まだ明らかとなっていない.そじて,凝縮時の初生液滴の発生メカニズムに関しては,文献[1,2]などが見られる.

筆者らは,従前より落下滴の挙動と熱伝達との関係を検討してきている[3]. そして,滴挙動の計算モデルを 提案し,計算値と実験値とを比較検討した.その結果,伝熱面の上部落下滴が下部伝熱面の凝縮滴を掃除する伝 熱促進効果と,被覆による伝熱妨害効果が評価された.

本報は、初生液滴の発生メカニズム自体の解明には至らないが、上記計算モデルを基にして、初生液滴の発生 遅れ時間を考慮し、その遅れ時間の熱伝達におよぼす影響について計算により検討する.

2. 計算モデルと計算式

計算により伝熱面上における滴状凝縮の熱伝達特性を求める際に用いる,滴の落下滴径,落下速度,熱伝達率等の諸関係式,および計算モデルについて下記に示す.

2.1 落下滴径

下部伝熱面に存在する滴は上部落下滴の掃除作用により離脱滴径 do よりも小さい滴径 d で落下すると考えられる. そこで, 滴径 d に至るまでの滴の成長時間を ta とすると次式の関係がある[3,4].

$$d = d_0 \times \left(\frac{t_d}{t_0}\right)^{\frac{3}{4}}$$

ここで、 t_0 は離脱滴径 d_0 に至るまでの滴の成長時間である.なお、 d_0 は垂直伝熱面において滴の自重によって離脱する限界径を表し、平均接触角 $\theta_m \ge \pi/2$ としたとき、理論的[5]に 2.2mm となり、実験[4]においても同様の結果が報告されている.

2.2 落下速度

伝熱面上の落下滴は、比較的質量が小さく落下距離も短い場合、無尾滴として落下し、落下運動中変形せずに 一塊となって転落する.しかしながら、落下滴の落下速度は平板表面の性状、あるいは滴の形状の変化などの影響を受け、厳密に解析することは極めて困難である.そこで、文献[6]において、種々の仮定を用いることにより 伝熱面上の滴の落下速度 Uを次式で求めている.

ここで、*M* は滴の質量、g は重力加速度、 σ は表面張力、b は滴の接触面直径、 $P=\mu\pi^2 f(\theta_m)^4 (M/\rho)^{1/3}/8$ 、 μ は粘度、 ρ は密度、 $f(\theta_m)$ は滴形状を球欠とするときの平均接触角 θ_m に対する係数、 $\beta=-0.1059\times 10^{-3}$ 、 $\gamma=0.07116$ である. ただし、 $f(\theta_m)$ は次式で表される.

$$f(\theta_m) = \frac{2\sin\theta_m}{\left\{\frac{\pi}{3}(1-\cos\theta_m)^2(2+\cos\theta_m)\right\}^{\frac{1}{3}}}$$

なお,本計算では滴を半球欠と仮定しθ_m=π/2,b=dとし,物性値には 20℃の値を用いて計算を行う.

 $\cdots \cdots (1)$

....(3)

30

REPORTS OF GRADUATE SCHOOL OF ENGINEERING, UNIVERSITY OF HYOGO No.57 (2004)

Fig.1 Appearance of condensate drops in condensing tube

Fig.2 Calculation model of dropwise condensation

2.3 滴状凝縮サイクルと熱伝達

図1の写真は伝熱円管内面上に発生した凝縮滴の様子を示している.図1からわかるように、伝熱面上には種々 の滴径の凝縮滴が無数に発生しており、時間経過とともに上部伝熱面からの離脱滴または、落下滴により下部伝 熱面の凝縮滴が掃除され、伝熱面を被覆しながら落下すると考えられる.このような、上部落下滴による下部伝 熱面の掃除は伝熱を促進し、また、上部落下滴による下部伝熱面の被覆は伝熱を妨害することが知られている[1,3]. そのとき、伝熱面上の任意の領域に発生する一つの滴について、その発生から離脱または、落下までのサイクル を考え、滴状凝縮における伝熱特性の計算モデルおよび、計算方法について以下に示す.

滴状凝縮のサイクルとして,一つの滴が発生し得る所定の領域 S を考え,その領域 S における凝縮滴の発生, 成長,離脱または,落下に関する滴状凝縮の一サイクルの現象についての計算モデルを図 2 に示す.離脱滴の発 生により,滴の離脱後,熱伝達に寄与しないある時間(遅れ時間)を経過した後,初生液滴は見られ,その後, 滴は成長していくものと考える.文献[1]より,この遅れ時間は,伝熱面過冷度により変化し存在することが実験 により示されている.

そのとき、滴状凝縮の一サイクルを考えると、まず、伝熱面上部に発生した凝縮滴が離脱し、凝縮滴の通過した領域Sは凝縮滴のない裸面になる.このときをサイクルの開始点0とする.そして、再びその領域Sに初生滴が発生するまでに極めて微小な時間がかかると考えられる.その時間を遅れ時間t_eとする.

次に,液滴は蒸気の凝縮および,隣接微小滴と合体して成長する.そして,離脱滴径に達するまでに,上部からの落下滴の掃除作用により落下する.その滴が発生してから落下し始めるまでの時間を成長時間 t_aとする.また,落下滴が領域 Sを通過している間に,落下滴が領域 Sを覆っている時間を被覆時間 t_aとする.そして,以上

細川・白岩:滴状凝縮における初生液滴の発生遅れ時間に関する検討

Table 1 Relationship between t_0 and q [3]

	<i>t</i> ₀ [s]	$q_0 [\mathrm{MW/m^2}]$
1	0.1	9.20
2	0.5	1.84
3	1.0	0.92
4	3.0	0.30
5	5.0	0.18

の一連の過程が終了する時間を滴状凝縮の基本的な掃除周期 はとすると、掃除周期 はは次式で表される.

 $t_s = t_e + t_d + t_c$

そして、遅れ時間 t_e 、被覆時間 t_c の間に熱伝達は行われないと仮定すると、掃除周期 t_s 間の平均熱伝達率hは次式で表される.

$$h = h_d \times \frac{t_d}{t_s}$$

ここで、 h_d は滴の成長時間 t_d 間の平均熱伝達率である. また、 h_d と滴径 dの関係は、次式で求められる[7].

$$h_d = h_0 \times \left(\frac{d}{d_0}\right)^{-\frac{1}{3}}$$

ここで、h₀は離脱滴の成長時間 t₀間の平均熱伝達率である.

任意局所伝熱面において, 凝縮滴の発生, 成長および, 落下のサイクルが繰り返される. そこで, それらの複数サイクルを含む, ーサイクルにおける, 滴の成長時間 t_dに対する相対局所熱伝達率 H は, 式(1), (4), (5), (6) より次式で求められる.

これまでの計算[3]では、遅れ時間 $t_e \ge 0$ として相対局所熱伝達率 $H \ge x$ めていた. しかし、表 1 [3]に示すように熱流束 q が大きい場合には、離脱滴の成長時間 t_0 が小さくなり、掃除周期 t_s に対して遅れ時間 t_e の占める時間割合が大きくなる. その結果、熱伝達におよぼす遅れ時間 t_e の影響が顕著になることが考えられる. 以下に、熱流束 q に対応する各 t_0 おいて、遅れ時間 $t_e \ge x$ 化させた場合の熱伝達率の計算結果を示す. なお、各領域 S において 100 回計算を行い、その算術平均値を各領域 S における相対局所熱伝達率 $H \ge t_e$ る。そして、各領域 S における相対局所熱伝達率 $H \ge t_e$ る。それ、本語の全体で平均化することにより、伝熱面全体における相対平均熱伝達率 H_m を求める.

·····(4)

....(5)

....(6)

32

REPORTS OF GRADUATE SCHOOL OF ENGINEERING, UNIVERSITY OF HYOGO No.57 (2004)

3. 計算結果と考察

図3から図5はそれぞれ、離脱滴の成長時間 $t_0=1.0$, 3.0, 5.0sにおける相対局所熱伝達率 Hの分布を遅れ時間 t_e をパラメータとして示す.図3から図5より、いずれの t_0 の場合も、遅れ時間 t_e による相対局所熱伝達率 Hへの影響が表われ、遅れ時間 t_e の値が大きくなるにしたがって相対局所熱伝達率 Hの値は低下する.また、伝熱面長さ Xについては、相対局所熱伝達率 Hは、Xの増加にともなってわずかに減少しているが、ほぼ一定値を示している.また、図3から図5を比較すると、 t_0 の増加にともなって、遅れ時間 t_e の増加による相対局所熱伝達率 Hの減少割合は小さくなっていることがわかる.

図 6 は、遅れ時間 $t_e=0s$ の相対平均熱伝達率 H_m に対する、遅れ時間 $t_e=0.01$ 、0.1s における相対平均熱伝達率 H_m の減少割合を示す.相対平均熱伝達率 H_m は、伝熱面長さ $X=0\sim100$ mm までの相対局所熱伝達率 Hの平均値を示す.図 6 より、相対平均熱伝達率 H_m の減少割合は、離脱滴の成長時間 t_0 が小さいほど大きくなり、高熱流束の場合に、初生液滴の発生遅れ時間の影響が大きく表われることがわかる.また、遅れ時間 t_e が大きいほど、各 t_0 における相対平均熱伝達率 H_m の減少割合は大きいことがわかる.

Fig.3 Distribution of heat transfer coefficient (t_0 =1.0s)

1.2

1.1

1

0.9

0.8

0

20

Η

60

80

100

40

Fig.5 Distribution of heat transfer coefficient (t_0 =5.0s)

33

NII-Electronic Library Service

Fig.6 Relationship between t_0 and decrease proportion of heat transfer coefficient

4. おわりに

初生液滴の発生遅れ時間に対して、熱伝達への影響の検討を行った.その結果、概略的な仮想計算モデルでは あるが、高熱流束になるにしたがって、遅れ時間の熱伝達率への影響は大きくなり、遅れ時間が大きいほど、熱 伝達は低下することがわかった.

文 献

[1] 棚沢:伝熱工学の進展4,養賢堂,pp.229-325(1976).
[2] 原口,他:日本機械学会論文集(B),56-529,pp.2697-2703(1990).
[3] 細川,他:日本機械学会論文集(B),51-472,pp.4055-4062(1985).
[4] 宇高,他:日本機械学会論文集(B),47-420,pp.1620-1628(1981).
[5] 細川,他:日本機械学会論文集(B),49-447,pp.2478-2482(1983).
[6] 白岩,他:空気調和・衛生工学会論文集,92,pp.93-99(2004).
[7] 棚沢,他:日本機械学会論文集(B),42-361,pp.2846-2853(1976).